Compare commits

8 Commits

Author SHA1 Message Date
Namu
140ac03222 refactor: add 2 spaces in tp7 between function
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 24s
2025-10-20 14:02:01 +02:00
Namu
dde9bd1759 feat: add tp7
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 23s
2025-10-17 21:08:29 +02:00
Namu
0a73e87fd9 feat: add tp6
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 24s
2025-10-17 13:59:37 +02:00
Namu
0c15382f8f fix: add tp5
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 23s
2025-10-12 16:24:46 +02:00
Namu
4c3b81b779 feat: add tp5
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 24s
2025-10-12 16:17:06 +02:00
Namu
d3500bff48 feat: add tp3
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 23s
2025-10-04 22:59:09 +02:00
Namu
e92d445afc Merge branch 'v1.0.0'
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 23s
# Conflicts:
#	ex2.py
2025-10-03 13:59:51 +02:00
Namu
fecea4f5a0 fix: try to fix the code to stop the robot the run in the wall
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 1m0s
2025-10-02 08:34:53 +02:00
7 changed files with 745 additions and 1 deletions

2
ex2.py
View File

@@ -119,5 +119,5 @@ def show(weights_path='cartpole_dqn.pth') -> None:
if __name__ == '__main__':
trained_model = train_and_save()
#trained_model = train_and_save()
show()

Binary file not shown.

147
tp3.py Normal file
View File

@@ -0,0 +1,147 @@
import random
from collections import deque
import gymnasium as gym
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
ACTION_SET = [
np.zeros(17),
np.full(17, -0.4),
np.full(17, 0.4),
np.concatenate([np.full(8, 0.4), np.full(9, -0.4)])
]
class DQN(nn.Module):
def __init__(self, n_states=348, n_actions=4):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_states, 64), nn.ReLU(),
nn.Linear(64, n_actions)
)
def forward(self, x):
"""
Forward pass of the network.
:param x: torch.Tensor of shape [n_states]
:return: torch.Tensor of shape [n_actions] with Q-Values for each action
"""
return self.net(x)
def train_and_save(weights_path="humanoid_dqn.pth", episodes=20_000, update_target_every=20):
"""
Train a DQN agent on the Humanoid-v5 environnement.
:param weights_path: file path to save learned network weights
:param episodes: number of training episodes (complete games)
:param update_target_every: how many episodes to wait before syncing the target network
:return: trained Q-Network ready to be used for inference
"""
# environnement setup
env = gym.make("Humanoid-v5")
n_states, n_actions = env.observation_space.shape[0], len(ACTION_SET)
# les DQN
policy_net = DQN(n_states, n_actions) # Q Network
target_net = DQN(n_states, n_actions) # Target network
target_net.load_state_dict(policy_net.state_dict()) # same weights at start
target_net.eval()
# Optimizer et hyperparameters
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
gamma = 0.99 # discount factor
epsilon = 1.0 # Fréquence d'exploration initiale
eps_min = 0.01 # Fréquence d'exploration minimale
eps_decay = 0.9999 # Facteur de réduction d'epsilon
memory = deque(maxlen=int(1e9))
batch_size = 64
# main training loop
for ep in range(episodes):
# env.reset() returns a tuple (initial_state, info_dict)
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
done, total_r = False, 0
while not done:
# epsilon-greedy à chaque prévision d'action pour une exploration plus fine (a = indice d'action, a_vecteur)
if random.random() < epsilon:
a = random.randrange(n_actions)
else:
a = torch.argmax(policy_net(s)).item()
a_vector = ACTION_SET[a]
# env.step(s) returns (next_state, reward, terminated, truncated, info)
ns, r, done, _, _ = env.step(a_vector)
ns = torch.tensor(ns, dtype=torch.float32)
memory.append((s, a ,r ,ns, done))
s, total_r = ns, total_r + r
# learning phase
if len(memory) >= batch_size:
batch = random.sample(memory, batch_size)
s_b, a_b, r_b, ns_b, d_b = zip(*batch)
s_b = torch.stack(s_b)
ns_b = torch.stack(ns_b)
# Q values for chosen actions
q_pred = policy_net(s_b).gather(1, torch.tensor(a_b).unsqueeze(1)).squeeze()
# Target values using target network
with torch.no_grad():
q_next = target_net(ns_b).max(1)[0]
q_target = torch.tensor(r_b, dtype=torch.float32) + \
gamma * q_next * (1 - torch.tensor(d_b, dtype=torch.float32))
# MSE
loss = ((q_pred - q_target)**2).mean()
optimizer.zero_grad(); loss.backward(); optimizer.step()
# decay epsilon to gradually reduce exploration
epsilon = max(eps_min, epsilon * eps_decay)
# Periodically synchronise target network with policy network
if (ep + 1) % update_target_every == 0:
target_net.load_state_dict(policy_net.state_dict())
if (ep + 1) % 20 == 0:
print(f'Episode {ep + 1}: total reward {total_r:.1f}, epsilon {epsilon:.2f}')
env.close()
# save trained policy network
torch.save(policy_net.state_dict(), weights_path)
print(f'Training finished. Weights saved to {weights_path}')
return policy_net # <--- trained Q-network
def show(weights_path="humanoid_dqn.pth") -> None:
"""
Load trained Q network and run a single episode to visually
demonstrate the learned policy
:param weights_path: path to the saved network weights
:return:
"""
env = gym.make("Humanoid-v5", render_mode="human")
qnet = DQN()
qnet.load_state_dict(torch.load(weights_path))
qnet.eval()
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
done = False
total_r = 0.0
while not done:
a = torch.argmax(qnet(s)).item()
s_, r, done, _, _ = env.step(ACTION_SET[a])
s = torch.tensor(s_, dtype=torch.float32)
total_r += r
env.close()
print(f'Demonstration finished. Reward: {total_r:.2f}')
if __name__ == '__main__':
trained_model = train_and_save()
show()

137
tp5.py Normal file
View File

@@ -0,0 +1,137 @@
import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
class Actor(nn.Module):
"""
The action DNN
"""
def __init__(self, n_states, n_actions):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_states, 128), nn.ReLU(),
nn.Linear(128, 64), nn.ReLU(),
nn.Linear(64, n_actions)
)
def forward(self, x):
return torch.softmax(self.net(x), dim=-1)
class Critic(nn.Module):
"""
The critic DNN
"""
def __init__(self, n_states):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_states, 64), nn.ReLU(),
nn.Linear(64, 1)
)
def forward(self, x):
return self.net(x)
def train_and_save(weights_path="cartpole_actor_critic.pth", episodes=500):
env = gym.make("CartPole-v1")
n_states, n_actions = env.observation_space.shape[0], env.action_space.n
# Definition des DNN acteur & critique
actor_net = Actor(n_states, n_actions)
critic_net = Critic(n_states)
# Hyperparameters et optimiser
optimizer_actor = optim.Adam(actor_net.parameters(), lr=1e-3)
optimizer_critic = optim.Adam(critic_net.parameters(), lr=5e-4)
gamma = 0.99
for ep in range(episodes):
# le state courant donner par l'environnement
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
# Des variables purement fonctionnelles
done, total_r = False, 0
log_probs = []
td_errors = []
while not done:
# Acteur : choisit une action
action_probs = actor_net(s)
dist = torch.distributions.Categorical(action_probs)
action = dist.sample()
log_prob = dist.log_prob(action)
# Environnement : effectue l'action
ns, r, terminated, truncated, _ = env.step(action.item())
done = terminated or truncated
ns = torch.tensor(ns, dtype=torch.float32)
total_r += r
# Critique : calcule la TD error
with torch.no_grad():
value_ns = critic_net(ns) if not done else torch.tensor([0.0]) # force ns = 0 si la simulation et terminée
value_n = critic_net(s)
td_error = r + gamma * value_ns - value_n # Pas de detach ici, car on veut le gradient pour le critic
# Actor loss
actor_loss = -log_prob * td_error.detach() # Detach td_error pour l'actor
optimizer_actor.zero_grad()
actor_loss.backward()
optimizer_actor.step()
# Critic loss
critic_loss = td_error.pow(2).mean() # MSE
optimizer_critic.zero_grad()
critic_loss.backward()
optimizer_critic.step()
print("value_n:", value_n.item(), "value_ns:", value_ns.item(), "td_error:", td_error.item())
log_probs.append(log_prob)
td_errors.append(td_error)
# Mise à jour de l'état
s = ns
print(f'Episode {ep + 1}: total reward {total_r:.1f}')
# Libération des ressources liées à l'environnement
env.close()
# Sauvegarde des poids
torch.save(actor_net.state_dict(), weights_path)
print(f'Training finished. Weights saved to {weights_path}')
return actor_net
def show(weights_path="cartpole_actor_critic.pth"):
env = gym.make("CartPole-v1", render_mode="human")
actor_net = Actor(env.observation_space.shape[0], env.action_space.n)
actor_net.load_state_dict(torch.load(weights_path))
actor_net.eval()
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
done = False
while not done:
with torch.no_grad():
action_probs = actor_net(s)
action = torch.argmax(action_probs).item()
s_, r, terminated, truncated, _ = env.step(action)
done = terminated or truncated
s = torch.tensor(s_, dtype=torch.float32)
env.close()
print('Demonstration finished.')
if __name__ == '__main__':
trained_model = train_and_save()
show()

169
tp6.py Normal file
View File

@@ -0,0 +1,169 @@
import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# ——— Réseaux de neurones ———
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 128),
nn.ReLU(),
nn.Linear(128, action_dim),
nn.Softmax(dim=-1)
)
def forward(self, state):
return self.net(state)
class Critic(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, state):
return self.net(state)
def compute_returns(rewards, values, gamma):
"""Calcule les retours et avantages normalisés"""
returns = []
R = 0
for r, v in zip(reversed(rewards), reversed(values)):
R = r + gamma * R
returns.insert(0, R)
returns = torch.tensor(returns, dtype=torch.float32)
values = torch.stack(values)
advantages = returns - values.squeeze()
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
return returns, advantages
def train_and_save():
env = gym.make("CartPole-v1")
actor = Actor(env.observation_space.shape[0], env.action_space.n)
critic = Critic(env.observation_space.shape[0])
optimizerA = optim.Adam(actor.parameters(), lr=3e-3)
optimizerC = optim.Adam(critic.parameters(), lr=3e-3)
gamma = 0.99
nb_episodes = 1500
rewards_history = []
advantages_history = []
critic_preds = []
for episode in range(nb_episodes):
state, _ = env.reset()
done = False
log_probs = []
values = []
rewards = []
entropies = []
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32)
probs = actor(state_tensor)
dist = torch.distributions.Categorical(probs)
action = dist.sample()
next_state, reward, done, trunc, _ = env.step(action.item())
value = critic(state_tensor)
log_prob = dist.log_prob(action)
entropy = dist.entropy()
log_probs.append(log_prob)
values.append(value)
rewards.append(reward)
entropies.append(entropy)
state = next_state
# ——— Calcul des avantages et retours ———
returns, advantages = compute_returns(rewards, values, gamma)
# ——— Mise à jour Actor ———
log_probs = torch.stack(log_probs)
entropies = torch.stack(entropies)
actor_loss = -(log_probs * advantages.detach()).mean() - 0.01 * entropies.mean()
optimizerA.zero_grad()
actor_loss.backward()
optimizerA.step()
# ——— Mise à jour Critic ———
critic_loss = (returns - torch.stack(values).squeeze()).pow(2).mean()
optimizerC.zero_grad()
critic_loss.backward()
optimizerC.step()
total_reward = sum(rewards)
rewards_history.append(total_reward)
advantages_history.append(advantages.mean().item())
critic_preds.append(torch.stack(values).mean().item())
print(f"Épisode {episode}, Récompense : {total_reward:.1f}")
# ——— Graphiques tous les 500 épisodes ———
if episode % 500 == 0 and episode != 0:
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
axes[0].plot(rewards_history, label='Rewards')
axes[0].set_title('Rewards')
axes[0].legend()
axes[1].plot(advantages_history, label='Advantages', color='orange')
axes[1].set_title('Advantages')
axes[1].legend()
axes[2].plot(critic_preds, label='Critic Prediction', color='green')
axes[2].plot(rewards_history, label='Actual Reward', color='red', linestyle='--')
axes[2].set_title('Critic vs Reward')
axes[2].legend()
plt.suptitle(f'Episode {episode}')
plt.tight_layout()
plt.show()
if np.mean(rewards_history[-100:]) >= 475:
print("I see this as an absolute win!")
break
torch.save(actor.state_dict(), "a2c_cartpole.pth")
def show(weights_path="a2c_cartpole.pth"):
env = gym.make("CartPole-v1", render_mode="human")
actor = Actor(env.observation_space.shape[0], env.action_space.n)
actor.load_state_dict(torch.load(weights_path))
actor.eval()
state, _ = env.reset()
done = False
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32)
with torch.no_grad():
probs = actor(state_tensor)
action = torch.argmax(probs).item()
next_state, _, terminated, truncated, _ = env.step(action)
done = terminated or truncated
state = next_state
env.close()
print("Demonstration finished.")
if __name__ == "__main__":
train_and_save()
show()

178
tp7.py Normal file
View File

@@ -0,0 +1,178 @@
import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# ——— Réseaux de neurones ———
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
)
self.mu_head = nn.Linear(256, action_dim)
self.log_std_head = nn.Linear(256, action_dim)
def forward(self, state):
x = self.net(state)
mu = self.mu_head(x)
log_std = torch.clamp(self.log_std_head(x), -20, 2)
std = torch.exp(log_std)
return mu, std
class Critic(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 256),
nn.ReLU(),
nn.Linear(256, 256),
nn.ReLU(),
nn.Linear(256, 1)
)
def forward(self, state):
return self.net(state)
# ——— GAE ———
def compute_gae(rewards, values, gamma, lam, next_value):
values = [v.detach() for v in values] + [next_value.detach()]
gae = 0
returns = []
for t in reversed(range(len(rewards))):
delta = rewards[t] + gamma * values[t + 1] - values[t]
gae = delta + gamma * lam * gae
returns.insert(0, gae + values[t])
returns = torch.tensor(returns, dtype=torch.float32)
advantages = returns - torch.stack(values[:-1]).squeeze()
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
return returns, advantages
# ——— Entraînement ———
def train_and_save():
env = gym.make("Pusher-v5")
actor = Actor(env.observation_space.shape[0], env.action_space.shape[0])
critic = Critic(env.observation_space.shape[0])
optimizerA = optim.Adam(actor.parameters(), lr=1e-4)
optimizerC = optim.Adam(critic.parameters(), lr=1e-4)
gamma = 0.99
lam = 0.95
nb_episodes = 2000
rewards_history = []
advantages_history = []
critic_preds = []
td_errors = []
for episode in range(nb_episodes):
state, _ = env.reset()
done = False
log_probs = []
values = []
rewards = []
entropies = []
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32)
mu, std = actor(state_tensor)
dist = torch.distributions.Normal(mu, std)
action = dist.rsample()
# clamp pour respecter les limites de l'environnement
low = torch.tensor(env.action_space.low, dtype=torch.float32)
high = torch.tensor(env.action_space.high, dtype=torch.float32)
action_clamped = torch.clamp(action, low, high)
next_state, reward, terminated, truncated, _ = env.step(action_clamped.detach().numpy())
done = terminated or truncated
reward_scaled = reward / 10.0 # scaling pour stabiliser l'apprentissage
value = critic(state_tensor)
log_prob = dist.log_prob(action).sum(dim=-1)
entropy = dist.entropy().sum(dim=-1)
log_probs.append(log_prob)
values.append(value)
rewards.append(reward_scaled)
entropies.append(entropy)
state = next_state
# next_value pour GAE
state_tensor = torch.tensor(state, dtype=torch.float32)
next_value = critic(state_tensor).detach() # même si done=True
# ——— GAE ———
returns, advantages = compute_gae(rewards, values, gamma, lam, next_value)
# ——— Mise à jour Actor ———
log_probs = torch.stack(log_probs)
entropies = torch.stack(entropies)
actor_loss = -(log_probs * advantages.detach()).mean() - 0.02 * entropies.mean() # entropy coeff réduit
optimizerA.zero_grad()
actor_loss.backward()
optimizerA.step()
# ——— Mise à jour Critic ———
critic_loss = (returns - torch.stack(values).squeeze()).pow(2).mean()
optimizerC.zero_grad()
critic_loss.backward()
optimizerC.step()
total_reward = sum(rewards)
rewards_history.append(total_reward)
advantages_history.append(advantages.mean().item())
critic_preds.append(torch.stack(values).mean().item())
td_errors.append((returns - torch.stack(values).squeeze()).mean().item())
print(f"Épisode {episode}, Récompense : {total_reward:.2f}")
# ——— Graphiques tous les 500 épisodes ———
if episode % 500 == 0 and episode != 0:
fig, axes = plt.subplots(1, 4, figsize=(20, 4))
axes[0].plot(rewards_history, label='Rewards'); axes[0].set_title('Rewards'); axes[0].legend()
axes[1].plot(advantages_history, label='Advantages', color='orange'); axes[1].set_title('Advantages'); axes[1].legend()
axes[2].plot(critic_preds, label='Critic Prediction', color='green'); axes[2].plot(rewards_history, label='Actual Reward', color='red', linestyle='--'); axes[2].set_title('Critic vs Reward'); axes[2].legend()
axes[3].plot(td_errors, label='TD Error', color='purple'); axes[3].set_title('TD Error'); axes[3].legend()
plt.suptitle(f'Épisode {episode}')
plt.tight_layout()
plt.show()
torch.save(actor.state_dict(), "a2c_pusher.pth")
def show(weights_path="a2c_pusher.pth"):
env = gym.make("Pusher-v5", render_mode="human")
actor = Actor(env.observation_space.shape[0], env.action_space.shape[0])
actor.load_state_dict(torch.load(weights_path))
actor.eval()
state, _ = env.reset()
done = False
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32).detach()
with torch.no_grad():
mu, _ = actor(state_tensor)
action = mu.detach().numpy()
next_state, _, terminated, truncated, _ = env.step(action)
done = terminated or truncated
state = next_state
env.close()
print("Demonstration finished.")
if __name__ == "__main__":
train_and_save()
show()

113
tp7_gpt_exemple.py Normal file
View File

@@ -0,0 +1,113 @@
import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions import Normal
# -----------------------------
# Réseau Actor-Critic
# -----------------------------
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=128):
super().__init__()
self.shared = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU()
)
self.actor_mean = nn.Linear(hidden_dim, action_dim)
self.actor_logstd = nn.Parameter(torch.zeros(action_dim))
self.critic = nn.Linear(hidden_dim, 1)
def forward(self, x):
x = self.shared(x)
mean = self.actor_mean(x)
logstd = self.actor_logstd.expand_as(mean)
dist = Normal(mean, logstd.exp())
value = self.critic(x)
return dist, value
# -----------------------------
# Agent A2C
# -----------------------------
class A2CAgent:
def __init__(self, env_name, gamma=0.99, lr=1e-3):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.env = gym.make(env_name)
self.gamma = gamma
state_dim = self.env.observation_space.shape[0]
action_dim = self.env.action_space.shape[0]
self.model = ActorCritic(state_dim, action_dim).to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
def select_action(self, state):
state = torch.FloatTensor(state).to(self.device)
dist, _ = self.model(state)
action = dist.sample()
log_prob = dist.log_prob(action).sum(dim=-1)
return action.cpu().numpy(), log_prob
def compute_returns(self, rewards, masks, next_value):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + self.gamma * R * masks[step]
returns.insert(0, R)
return returns
def update(self, trajectory, next_state):
states = torch.FloatTensor([t[0] for t in trajectory]).to(self.device)
actions = torch.FloatTensor([t[1] for t in trajectory]).to(self.device)
log_probs = torch.stack([t[2] for t in trajectory]).to(self.device)
rewards = [t[3] for t in trajectory]
masks = [t[4] for t in trajectory]
with torch.no_grad():
_, next_value = self.model(torch.FloatTensor(next_state).to(self.device))
next_value = next_value.squeeze()
returns = self.compute_returns(rewards, masks, next_value)
returns = torch.FloatTensor(returns).to(self.device)
dist, values = self.model(states)
advantages = returns - values.squeeze()
actor_loss = -(log_probs * advantages.detach()).mean()
critic_loss = advantages.pow(2).mean()
loss = actor_loss + 0.5 * critic_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def train(self, max_steps=2000, update_every=5):
state, _ = self.env.reset()
trajectory = []
for step in range(max_steps):
action, log_prob = self.select_action(state)
next_state, reward, terminated, truncated, _ = self.env.step(action)
done = terminated or truncated
mask = 0.0 if done else 1.0 # <-- correction ici
trajectory.append((state, action, log_prob, reward, mask))
state = next_state
if (step + 1) % update_every == 0:
self.update(trajectory, next_state)
trajectory = []
if (step + 1) % 100 == 0:
print(f"Step {step + 1}, reward: {reward}")
# -----------------------------
# Lancer l'entraînement
# -----------------------------
if __name__ == "__main__":
agent = A2CAgent("Pusher-v5")
agent.train(max_steps=2000)