feat: add tp6
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 24s

This commit is contained in:
Namu
2025-10-17 13:59:37 +02:00
parent 0c15382f8f
commit 0a73e87fd9
2 changed files with 338 additions and 0 deletions

169
tp6.py Normal file
View File

@@ -0,0 +1,169 @@
import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# ——— Réseaux de neurones ———
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 128),
nn.ReLU(),
nn.Linear(128, action_dim),
nn.Softmax(dim=-1)
)
def forward(self, state):
return self.net(state)
class Critic(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, state):
return self.net(state)
def compute_returns(rewards, values, gamma):
"""Calcule les retours et avantages normalisés"""
returns = []
R = 0
for r, v in zip(reversed(rewards), reversed(values)):
R = r + gamma * R
returns.insert(0, R)
returns = torch.tensor(returns, dtype=torch.float32)
values = torch.stack(values)
advantages = returns - values.squeeze()
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
return returns, advantages
def train_and_save():
env = gym.make("CartPole-v1")
actor = Actor(env.observation_space.shape[0], env.action_space.n)
critic = Critic(env.observation_space.shape[0])
optimizerA = optim.Adam(actor.parameters(), lr=3e-3)
optimizerC = optim.Adam(critic.parameters(), lr=3e-3)
gamma = 0.99
nb_episodes = 1500
rewards_history = []
advantages_history = []
critic_preds = []
for episode in range(nb_episodes):
state, _ = env.reset()
done = False
log_probs = []
values = []
rewards = []
entropies = []
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32)
probs = actor(state_tensor)
dist = torch.distributions.Categorical(probs)
action = dist.sample()
next_state, reward, done, trunc, _ = env.step(action.item())
value = critic(state_tensor)
log_prob = dist.log_prob(action)
entropy = dist.entropy()
log_probs.append(log_prob)
values.append(value)
rewards.append(reward)
entropies.append(entropy)
state = next_state
# ——— Calcul des avantages et retours ———
returns, advantages = compute_returns(rewards, values, gamma)
# ——— Mise à jour Actor ———
log_probs = torch.stack(log_probs)
entropies = torch.stack(entropies)
actor_loss = -(log_probs * advantages.detach()).mean() - 0.01 * entropies.mean()
optimizerA.zero_grad()
actor_loss.backward()
optimizerA.step()
# ——— Mise à jour Critic ———
critic_loss = (returns - torch.stack(values).squeeze()).pow(2).mean()
optimizerC.zero_grad()
critic_loss.backward()
optimizerC.step()
total_reward = sum(rewards)
rewards_history.append(total_reward)
advantages_history.append(advantages.mean().item())
critic_preds.append(torch.stack(values).mean().item())
print(f"Épisode {episode}, Récompense : {total_reward:.1f}")
# ——— Graphiques tous les 500 épisodes ———
if episode % 500 == 0 and episode != 0:
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
axes[0].plot(rewards_history, label='Rewards')
axes[0].set_title('Rewards')
axes[0].legend()
axes[1].plot(advantages_history, label='Advantages', color='orange')
axes[1].set_title('Advantages')
axes[1].legend()
axes[2].plot(critic_preds, label='Critic Prediction', color='green')
axes[2].plot(rewards_history, label='Actual Reward', color='red', linestyle='--')
axes[2].set_title('Critic vs Reward')
axes[2].legend()
plt.suptitle(f'Episode {episode}')
plt.tight_layout()
plt.show()
if np.mean(rewards_history[-100:]) >= 475:
print("I see this as an absolute win!")
break
torch.save(actor.state_dict(), "a2c_cartpole.pth")
def show(weights_path="a2c_cartpole.pth"):
env = gym.make("CartPole-v1", render_mode="human")
actor = Actor(env.observation_space.shape[0], env.action_space.n)
actor.load_state_dict(torch.load(weights_path))
actor.eval()
state, _ = env.reset()
done = False
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32)
with torch.no_grad():
probs = actor(state_tensor)
action = torch.argmax(probs).item()
next_state, _, terminated, truncated, _ = env.step(action)
done = terminated or truncated
state = next_state
env.close()
print("Demonstration finished.")
if __name__ == "__main__":
train_and_save()
show()

169
tp7.py Normal file
View File

@@ -0,0 +1,169 @@
import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
# ——— Réseaux de neurones ———
class Actor(nn.Module):
def __init__(self, state_dim, action_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 128),
nn.ReLU(),
nn.Linear(128, action_dim),
nn.Softmax(dim=-1)
)
def forward(self, state):
return self.net(state)
class Critic(nn.Module):
def __init__(self, state_dim):
super().__init__()
self.net = nn.Sequential(
nn.Linear(state_dim, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, state):
return self.net(state)
def compute_returns(rewards, values, gamma):
"""Calcule les retours et avantages normalisés"""
returns = []
R = 0
for r, v in zip(reversed(rewards), reversed(values)):
R = r + gamma * R
returns.insert(0, R)
returns = torch.tensor(returns, dtype=torch.float32)
values = torch.stack(values)
advantages = returns - values.squeeze()
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
return returns, advantages
def train_and_save():
env = gym.make("CartPole-v1")
actor = Actor(env.observation_space.shape[0], env.action_space.n)
critic = Critic(env.observation_space.shape[0])
optimizerA = optim.Adam(actor.parameters(), lr=3e-3)
optimizerC = optim.Adam(critic.parameters(), lr=3e-3)
gamma = 0.99
nb_episodes = 1500
rewards_history = []
advantages_history = []
critic_preds = []
for episode in range(nb_episodes):
state, _ = env.reset()
done = False
log_probs = []
values = []
rewards = []
entropies = []
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32)
probs = actor(state_tensor)
dist = torch.distributions.Categorical(probs)
action = dist.sample()
next_state, reward, done, trunc, _ = env.step(action.item())
value = critic(state_tensor)
log_prob = dist.log_prob(action)
entropy = dist.entropy()
log_probs.append(log_prob)
values.append(value)
rewards.append(reward)
entropies.append(entropy)
state = next_state
# ——— Calcul des avantages et retours ———
returns, advantages = compute_returns(rewards, values, gamma)
# ——— Mise à jour Actor ———
log_probs = torch.stack(log_probs)
entropies = torch.stack(entropies)
actor_loss = -(log_probs * advantages.detach()).mean() - 0.01 * entropies.mean()
optimizerA.zero_grad()
actor_loss.backward()
optimizerA.step()
# ——— Mise à jour Critic ———
critic_loss = (returns - torch.stack(values).squeeze()).pow(2).mean()
optimizerC.zero_grad()
critic_loss.backward()
optimizerC.step()
total_reward = sum(rewards)
rewards_history.append(total_reward)
advantages_history.append(advantages.mean().item())
critic_preds.append(torch.stack(values).mean().item())
print(f"Épisode {episode}, Récompense : {total_reward:.1f}")
# ——— Graphiques tous les 500 épisodes ———
if episode % 500 == 0 and episode != 0:
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
axes[0].plot(rewards_history, label='Rewards')
axes[0].set_title('Rewards')
axes[0].legend()
axes[1].plot(advantages_history, label='Advantages', color='orange')
axes[1].set_title('Advantages')
axes[1].legend()
axes[2].plot(critic_preds, label='Critic Prediction', color='green')
axes[2].plot(rewards_history, label='Actual Reward', color='red', linestyle='--')
axes[2].set_title('Critic vs Reward')
axes[2].legend()
plt.suptitle(f'Episode {episode}')
plt.tight_layout()
plt.show()
if np.mean(rewards_history[-100:]) >= 475:
print("I see this as an absolute win!")
break
torch.save(actor.state_dict(), "a2c_cartpole.pth")
def show(weights_path="a2c_cartpole.pth"):
env = gym.make("CartPole-v1", render_mode="human")
actor = Actor(env.observation_space.shape[0], env.action_space.n)
actor.load_state_dict(torch.load(weights_path))
actor.eval()
state, _ = env.reset()
done = False
while not done:
state_tensor = torch.tensor(state, dtype=torch.float32)
with torch.no_grad():
probs = actor(state_tensor)
action = torch.argmax(probs).item()
next_state, _, terminated, truncated, _ = env.step(action)
done = terminated or truncated
state = next_state
env.close()
print("Demonstration finished.")
if __name__ == "__main__":
train_and_save()
show()