fix: the ai works !
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 22s

This commit is contained in:
2025-10-02 17:27:47 +02:00
parent e26f2ff15d
commit 311d9ee271

18
ex2.py
View File

@@ -17,8 +17,8 @@ class DQN(nn.Module):
"""
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_states, 64), nn.ReLU(),
nn.Linear(64, n_actions)
nn.Linear(n_states, 128), nn.ReLU(),
nn.Linear(128, n_actions)
)
@@ -47,12 +47,12 @@ def train_and_save(weights_path="cartpole_dqn.pth", episodes=2_000, update_targe
target_net.load_state_dict(policy_net.state_dict()) # same weights at start
target_net.eval()
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3) # <- erreur ici
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
gamma = 0.99 # discount factor
epsilon = 1.0 # Fréquence d'exploration initiale
eps_min = 0.05 # Fréquence d'exploration minimale
eps_decay = 0.995 # Facteur de réduction d'epsilon
memory = deque(maxlen=5000)
eps_min = 0.01 # Fréquence d'exploration minimale
eps_decay = 0.999 # Facteur de réduction d'epsilon
memory = deque(maxlen=100_000)
batch_size = 64
for ep in range(episodes):
@@ -108,14 +108,16 @@ def show(weights_path='cartpole_dqn.pth') -> None:
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
done = False
total_r = 0.0
while not done:
a = torch.argmax(qnet(s)).item()
s_, r, done, _, _ = env.step(a)
total_r += r
s = torch.tensor(s_, dtype=torch.float32)
env.close()
print('Demonstration finished.')
print(f'Demonstration finished. {total_r:.1f}')
if __name__ == '__main__':
#trained_model = train_and_save()
trained_model = train_and_save()
show()