Merge branch 'v1.0.0'
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 23s

# Conflicts:
#	ex2.py
This commit is contained in:
Namu
2025-10-03 13:59:51 +02:00

21
ex2.py
View File

@@ -5,7 +5,6 @@ import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
class DQN(nn.Module):
@@ -18,10 +17,11 @@ class DQN(nn.Module):
"""
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_states, 64), nn.ReLU(),
nn.Linear(64, n_actions)
nn.Linear(n_states, 128), nn.ReLU(),
nn.Linear(128, n_actions)
)
def forward(self, x):
"""
@@ -38,7 +38,7 @@ def epsilon_greedy(epsilon: float, s, policy_net: DQN, n_actions: int) -> int:
return torch.argmax(policy_net(s)).item()
def train_and_save(weights_path="cartpole_dqn.pth", episodes=2_000, update_target_every=20) -> DQN:
def train_and_save(weights_path="cartpole_dqn.pth", episodes=2_000, update_target_every=20):
env = gym.make('CartPole-v1')
n_states, n_actions = env.observation_space.shape[0], env.action_space.n
@@ -47,16 +47,15 @@ def train_and_save(weights_path="cartpole_dqn.pth", episodes=2_000, update_targe
target_net.load_state_dict(policy_net.state_dict()) # same weights at start
target_net.eval()
optimizer = optim.Adam(policy_net.parameters(), lr=1e-2) #1e-3
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
gamma = 0.99 # discount factor
epsilon = 1.0 # Fréquence d'exploration initiale
eps_min = 0.05 # Fréquence d'exploration minimale
eps_decay = 0.995 # Facteur de réduction d'epsilon
memory = deque(maxlen=5_000)
eps_min = 0.01 # Fréquence d'exploration minimale
eps_decay = 0.999 # Facteur de réduction d'epsilon
memory = deque(maxlen=100_000)
batch_size = 64
for ep in range(episodes):
print(f'Episode: {ep}/{episodes}')
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
done, total_r = False, 0
@@ -109,12 +108,14 @@ def show(weights_path='cartpole_dqn.pth') -> None:
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
done = False
total_r = 0.0
while not done:
a = torch.argmax(qnet(s)).item()
s_, r, done, _, _ = env.step(a)
total_r += r
s = torch.tensor(s_, dtype=torch.float32)
env.close()
print('Demonstration finished.')
print(f'Demonstration finished. {total_r:.1f}')
if __name__ == '__main__':