Feat: Add dichotomie and Newton-Raphson
This commit is contained in:
102
ex5.py
102
ex5.py
@@ -1,56 +1,80 @@
|
|||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
class Point:
|
dich_steps = []
|
||||||
def __init__(self, x: float, y: float):
|
new_raph_steps = []
|
||||||
self.x = x
|
|
||||||
self.y = y
|
def f(x) -> float:
|
||||||
|
return np.exp(x) - 2 * np.cos(x)
|
||||||
|
|
||||||
|
|
||||||
def interpolation_lagrange(points: list[Point], x: float) -> float:
|
def dichotomie(x_0, a, b, epsilon, n=0) -> float:
|
||||||
interpolation: float = 0.
|
delta = f(a) * f(x_0)
|
||||||
n = len(points)
|
x_1 = (a + b) / 2
|
||||||
for i in range(n):
|
|
||||||
term: float = 1. # 0.0 will always give 0, it's a product ! So lets put 1
|
|
||||||
# Lagrange L(x)
|
|
||||||
for k in range(n):
|
|
||||||
if k != i:
|
|
||||||
term *= ((x - points[k].x) / (points[i].x - points[k].x))
|
|
||||||
# interpolation with a piece of Lagrange (y_i)
|
|
||||||
interpolation += term * points[i].y
|
|
||||||
|
|
||||||
return interpolation
|
dich_steps.append(x_1)
|
||||||
|
|
||||||
|
if np.abs(b - a) <= epsilon:
|
||||||
|
return x_1
|
||||||
|
|
||||||
|
if delta < 0:
|
||||||
|
return dichotomie(x_1, a, x_0, epsilon, n+1)
|
||||||
|
elif delta == 0:
|
||||||
|
return x_1
|
||||||
|
else:
|
||||||
|
return dichotomie(x_1, x_0, b, epsilon, n+1)
|
||||||
|
|
||||||
|
|
||||||
def interpolation_newton(points: list[Point], x: float) -> float:
|
def f_prime(x) -> float:
|
||||||
interpolation = 0. # alpha sum
|
return 1 + np.sin(x)
|
||||||
n = len(points)
|
|
||||||
for i in range(n):
|
|
||||||
a_i = 1.
|
|
||||||
for k in range(n-1):
|
|
||||||
a_i *= (points[k+1].y - points[k].y) / (points[k+1].x - points[k].x)
|
|
||||||
|
|
||||||
return interpolation
|
|
||||||
|
def newton_raphson(x_0, epsilon) -> float:
|
||||||
|
x_1 = x_0 - (f(x_0) / f_prime(x_0))
|
||||||
|
new_raph_steps.append(x_1)
|
||||||
|
|
||||||
|
if np.abs(x_1 - x_0) < epsilon:
|
||||||
|
return x_1
|
||||||
|
elif np.abs(f(x_0)) < epsilon:
|
||||||
|
return x_1
|
||||||
|
return newton_raphson(x_1, epsilon)
|
||||||
|
|
||||||
|
|
||||||
def ex1() -> None:
|
def ex1() -> None:
|
||||||
p1 = Point(-1, 0)
|
x = np.arange(0, 1, 0.001)
|
||||||
p2 = Point(0, -1)
|
f = [np.exp(i) - 2 * np.cos(i) for i in x]
|
||||||
p3 = Point(1, 0)
|
f1 = [np.exp(i) for i in x]
|
||||||
p4 = Point(3, 70)
|
f2 = [2 * np.cos(i) for i in x]
|
||||||
|
|
||||||
points = []
|
for i in range(len(x)):
|
||||||
points.append(p1)
|
if f1[i] == f2[i]:
|
||||||
points.append(p2)
|
print(f1[i])
|
||||||
points.append(p3)
|
|
||||||
points.append(p4)
|
plt.plot(x, f)
|
||||||
|
plt.plot(x, f1)
|
||||||
|
plt.plot(x, f2)
|
||||||
|
plt.grid()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
dichotomie_res = dichotomie(0, 0, 1, 10e-6)
|
||||||
|
print(dichotomie_res)
|
||||||
|
|
||||||
|
plt.plot(dich_steps)
|
||||||
|
plt.title('Convergence de la dichotomie')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
newton_raphson_res = newton_raphson(0.1, 10e-6)
|
||||||
|
print(newton_raphson_res)
|
||||||
|
|
||||||
|
plt.plot(new_raph_steps)
|
||||||
|
plt.title('Convergence de Newton-Raphson')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
"""
|
"""
|
||||||
|
La dichotomie à moins d'étape que NR, mais NR à l'air plus rapide,
|
||||||
|
comme Flash McQueen
|
||||||
"""
|
"""
|
||||||
|
|
||||||
racine_x_2 = interpolation_lagrange(points, 2.0)
|
|
||||||
racine_x_3 = interpolation_lagrange(points, 3.0)
|
|
||||||
print(f'racine X = 2 = {racine_x_2}, racine X = 3 = {racine_x_3}')
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
ex1()
|
ex1()
|
||||||
Reference in New Issue
Block a user