Feat: Add dichotomie and Newton-Raphson

This commit is contained in:
Namu
2025-10-15 17:31:57 +02:00
parent c2ca468ce5
commit b04a54cad7

102
ex5.py
View File

@@ -1,56 +1,80 @@
import matplotlib.pyplot as plt
import numpy as np
class Point:
def __init__(self, x: float, y: float):
self.x = x
self.y = y
dich_steps = []
new_raph_steps = []
def f(x) -> float:
return np.exp(x) - 2 * np.cos(x)
def interpolation_lagrange(points: list[Point], x: float) -> float:
interpolation: float = 0.
n = len(points)
for i in range(n):
term: float = 1. # 0.0 will always give 0, it's a product ! So lets put 1
# Lagrange L(x)
for k in range(n):
if k != i:
term *= ((x - points[k].x) / (points[i].x - points[k].x))
# interpolation with a piece of Lagrange (y_i)
interpolation += term * points[i].y
def dichotomie(x_0, a, b, epsilon, n=0) -> float:
delta = f(a) * f(x_0)
x_1 = (a + b) / 2
return interpolation
dich_steps.append(x_1)
if np.abs(b - a) <= epsilon:
return x_1
if delta < 0:
return dichotomie(x_1, a, x_0, epsilon, n+1)
elif delta == 0:
return x_1
else:
return dichotomie(x_1, x_0, b, epsilon, n+1)
def interpolation_newton(points: list[Point], x: float) -> float:
interpolation = 0. # alpha sum
n = len(points)
for i in range(n):
a_i = 1.
for k in range(n-1):
a_i *= (points[k+1].y - points[k].y) / (points[k+1].x - points[k].x)
def f_prime(x) -> float:
return 1 + np.sin(x)
return interpolation
def newton_raphson(x_0, epsilon) -> float:
x_1 = x_0 - (f(x_0) / f_prime(x_0))
new_raph_steps.append(x_1)
if np.abs(x_1 - x_0) < epsilon:
return x_1
elif np.abs(f(x_0)) < epsilon:
return x_1
return newton_raphson(x_1, epsilon)
def ex1() -> None:
p1 = Point(-1, 0)
p2 = Point(0, -1)
p3 = Point(1, 0)
p4 = Point(3, 70)
x = np.arange(0, 1, 0.001)
f = [np.exp(i) - 2 * np.cos(i) for i in x]
f1 = [np.exp(i) for i in x]
f2 = [2 * np.cos(i) for i in x]
points = []
points.append(p1)
points.append(p2)
points.append(p3)
points.append(p4)
for i in range(len(x)):
if f1[i] == f2[i]:
print(f1[i])
plt.plot(x, f)
plt.plot(x, f1)
plt.plot(x, f2)
plt.grid()
plt.show()
dichotomie_res = dichotomie(0, 0, 1, 10e-6)
print(dichotomie_res)
plt.plot(dich_steps)
plt.title('Convergence de la dichotomie')
plt.show()
newton_raphson_res = newton_raphson(0.1, 10e-6)
print(newton_raphson_res)
plt.plot(new_raph_steps)
plt.title('Convergence de Newton-Raphson')
plt.show()
"""
La dichotomie à moins d'étape que NR, mais NR à l'air plus rapide,
comme Flash McQueen
"""
racine_x_2 = interpolation_lagrange(points, 2.0)
racine_x_3 = interpolation_lagrange(points, 3.0)
print(f'racine X = 2 = {racine_x_2}, racine X = 3 = {racine_x_3}')
if __name__ == '__main__':
ex1()
ex1()