Fix: Correct jacobi, gauss, cholesky

This commit is contained in:
Namu
2025-10-19 19:03:43 +02:00
parent b04a54cad7
commit 128e07d420
5 changed files with 133 additions and 96 deletions

95
ex3.py
View File

@@ -5,81 +5,62 @@ import numpy as np
# D_inv = np.diag(1 / np.diag(A))
def to_D(A: np.array) -> np.array:
D = np.zeros_like(A)
for i in range(len(A)):
D[i, i] = A[i, i]
return D
def to_L(A: np.array) -> np.array:
L = np.zeros_like(A)
for i in range(len(A)):
for j in range(len(A)):
if i < j:
L[i, j] = A[i, j]
return L
def to_U(A: np.array) -> np.array:
U = np.zeros_like(A)
for i in range(len(A)):
for j in range(len(A)):
if i > j:
U[i, j] = A[i, j]
return U
def diag_strict_dominante(A) -> bool:
diag_sum = 0
for i in range(len(A)):
diag_sum += A[i, i]
other_sum = 0
for i in range(len(A)):
for j in range(len(A)):
if i != j:
other_sum += A[i, j]
return diag_sum > other_sum
"""
Pour chaque ligne, il faut que la somme des coefs non-diagonaux soit inférieure au coef diagonal
TOUT EST EN VALEUR ABSOLUE.
:param A:
:return:
"""
A = np.array(A)
n = len(A)
for i in range(n):
diag = abs(A[i,i])
row_sum = np.sum(np.abs(A[i,:])) - diag # On fait la somme de toute la ligne puis on soustrait le coef diagonal
if diag <= row_sum:
return False
return True
def jacobi(A, b):
def jacobi(A, b, epsilon=1e-6, max_iter=100_000):
if not diag_strict_dominante(A):
raise Exception('A doit être à diagnonale strictement dominante')
raise ValueError("A doit être à diagonale strictement dominante")
L = to_L(A)
U = to_U(A)
x0 = np.array([0,0,0])
epsilon = 1e-6
max_iter = 100_000
x = np.zeros_like(b, dtype=float)
L = np.tril(A, k=-1) # Partie triangulaire inférieure (sans diagonale)
U = np.triu(A, k=1) # Partie triangulaire supérieure (sans diagonale)
x = x0
for k in range(max_iter):
x_new = np.diag(1 / np.diag(A)) @ ((L + U) @ x) + np.diag(1 / np.diag(A)) @ b
if np.linalg.norm(x_new - x, ord=2) < epsilon or np.linalg.norm(b - A @ x_new, ord=2) < epsilon:
for _ in range(max_iter):
x_new = np.diag(1 / np.diag(A)) @ (b - (L + U) @ x)
if np.linalg.norm(x_new - x, ord=2) < epsilon:
break
x = x_new
return x
return x_new
def gauss_seidel(A, b):
x0 = np.array([0, 0, 0])
D = to_D(A)
L = to_L(A)
U = to_U(A)
D = np.diag(np.diag(A))
L = np.tril(A, k=-1)
U = np.triu(A, k=1)
epsilon = 1e-6
done = False
max_iter = 100_000
# Pré-calcul de l'inverse de (D - L) pour éviter de le recalculer à chaque itération
inv_D_minus_L = np.linalg.inv(D - L)
x = x0
while not done:
x_new = np.linalg.inv(D - L) @ U @ x + np.linalg.inv(D - L) @ b
for _ in range(max_iter):
x_new = inv_D_minus_L @ (-U @ x) + inv_D_minus_L @ b
done: bool = np.linalg.norm(x_new - x, ord=2) < epsilon
if np.linalg.norm(x_new - x, ord=2) < epsilon:
return x_new
x = x_new
return x
raise RuntimeError('Gauss-Seidel')
def relaxation(A, b, omega=1.0, epsilon=1e-6, max_iter=100_000):
@@ -113,9 +94,9 @@ if __name__ == '__main__':
b = np.array([1,0,0])
D = to_D(A)
L = to_L(A)
U = to_U(A)
D = np.diag(A)
L = np.tril(A)
U = np.triu(A)
res_jacobi = jacobi(A, b)
print(res_jacobi)