170 lines
5.0 KiB
Python
170 lines
5.0 KiB
Python
import gymnasium as gym
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
# ——— Réseaux de neurones ———
|
|
class Actor(nn.Module):
|
|
def __init__(self, state_dim, action_dim):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(state_dim, 128),
|
|
nn.ReLU(),
|
|
nn.Linear(128, action_dim),
|
|
nn.Softmax(dim=-1)
|
|
)
|
|
|
|
def forward(self, state):
|
|
return self.net(state)
|
|
|
|
|
|
class Critic(nn.Module):
|
|
def __init__(self, state_dim):
|
|
super().__init__()
|
|
self.net = nn.Sequential(
|
|
nn.Linear(state_dim, 128),
|
|
nn.ReLU(),
|
|
nn.Linear(128, 1)
|
|
)
|
|
|
|
def forward(self, state):
|
|
return self.net(state)
|
|
|
|
|
|
def compute_returns(rewards, values, gamma):
|
|
"""Calcule les retours et avantages normalisés"""
|
|
returns = []
|
|
R = 0
|
|
for r, v in zip(reversed(rewards), reversed(values)):
|
|
R = r + gamma * R
|
|
returns.insert(0, R)
|
|
returns = torch.tensor(returns, dtype=torch.float32)
|
|
values = torch.stack(values)
|
|
advantages = returns - values.squeeze()
|
|
advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
|
|
return returns, advantages
|
|
|
|
|
|
def train_and_save():
|
|
env = gym.make("CartPole-v1")
|
|
actor = Actor(env.observation_space.shape[0], env.action_space.n)
|
|
critic = Critic(env.observation_space.shape[0])
|
|
|
|
optimizerA = optim.Adam(actor.parameters(), lr=3e-3)
|
|
optimizerC = optim.Adam(critic.parameters(), lr=3e-3)
|
|
gamma = 0.99
|
|
|
|
nb_episodes = 1500
|
|
rewards_history = []
|
|
advantages_history = []
|
|
critic_preds = []
|
|
|
|
for episode in range(nb_episodes):
|
|
state, _ = env.reset()
|
|
done = False
|
|
|
|
log_probs = []
|
|
values = []
|
|
rewards = []
|
|
entropies = []
|
|
|
|
while not done:
|
|
state_tensor = torch.tensor(state, dtype=torch.float32)
|
|
probs = actor(state_tensor)
|
|
dist = torch.distributions.Categorical(probs)
|
|
action = dist.sample()
|
|
|
|
next_state, reward, done, trunc, _ = env.step(action.item())
|
|
|
|
value = critic(state_tensor)
|
|
log_prob = dist.log_prob(action)
|
|
entropy = dist.entropy()
|
|
|
|
log_probs.append(log_prob)
|
|
values.append(value)
|
|
rewards.append(reward)
|
|
entropies.append(entropy)
|
|
|
|
state = next_state
|
|
|
|
# ——— Calcul des avantages et retours ———
|
|
returns, advantages = compute_returns(rewards, values, gamma)
|
|
|
|
# ——— Mise à jour Actor ———
|
|
log_probs = torch.stack(log_probs)
|
|
entropies = torch.stack(entropies)
|
|
actor_loss = -(log_probs * advantages.detach()).mean() - 0.01 * entropies.mean()
|
|
|
|
optimizerA.zero_grad()
|
|
actor_loss.backward()
|
|
optimizerA.step()
|
|
|
|
# ——— Mise à jour Critic ———
|
|
critic_loss = (returns - torch.stack(values).squeeze()).pow(2).mean()
|
|
|
|
optimizerC.zero_grad()
|
|
critic_loss.backward()
|
|
optimizerC.step()
|
|
|
|
total_reward = sum(rewards)
|
|
rewards_history.append(total_reward)
|
|
advantages_history.append(advantages.mean().item())
|
|
critic_preds.append(torch.stack(values).mean().item())
|
|
|
|
print(f"Épisode {episode}, Récompense : {total_reward:.1f}")
|
|
|
|
# ——— Graphiques tous les 500 épisodes ———
|
|
if episode % 500 == 0 and episode != 0:
|
|
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
|
|
|
|
axes[0].plot(rewards_history, label='Rewards')
|
|
axes[0].set_title('Rewards')
|
|
axes[0].legend()
|
|
|
|
axes[1].plot(advantages_history, label='Advantages', color='orange')
|
|
axes[1].set_title('Advantages')
|
|
axes[1].legend()
|
|
|
|
axes[2].plot(critic_preds, label='Critic Prediction', color='green')
|
|
axes[2].plot(rewards_history, label='Actual Reward', color='red', linestyle='--')
|
|
axes[2].set_title('Critic vs Reward')
|
|
axes[2].legend()
|
|
|
|
plt.suptitle(f'Episode {episode}')
|
|
plt.tight_layout()
|
|
plt.show()
|
|
|
|
if np.mean(rewards_history[-100:]) >= 475:
|
|
print("I see this as an absolute win!")
|
|
break
|
|
|
|
torch.save(actor.state_dict(), "a2c_cartpole.pth")
|
|
|
|
|
|
def show(weights_path="a2c_cartpole.pth"):
|
|
env = gym.make("CartPole-v1", render_mode="human")
|
|
actor = Actor(env.observation_space.shape[0], env.action_space.n)
|
|
actor.load_state_dict(torch.load(weights_path))
|
|
actor.eval()
|
|
|
|
state, _ = env.reset()
|
|
done = False
|
|
while not done:
|
|
state_tensor = torch.tensor(state, dtype=torch.float32)
|
|
with torch.no_grad():
|
|
probs = actor(state_tensor)
|
|
action = torch.argmax(probs).item()
|
|
next_state, _, terminated, truncated, _ = env.step(action)
|
|
done = terminated or truncated
|
|
state = next_state
|
|
env.close()
|
|
print("Demonstration finished.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
train_and_save()
|
|
show()
|