Files
tp2-iaavancee/ex2.py
Namu 4c3b81b779
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 24s
feat: add tp5
2025-10-12 16:17:06 +02:00

124 lines
3.8 KiB
Python

import random
from collections import deque
import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
class DQN(nn.Module):
def __init__(self, n_states=4, n_actions=2):
"""
Notre modèle à deux états, et peux faire deux actions (trouver à gauche
ou à droite)
:param n_state:
:param n_action:
"""
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_states, 128), nn.ReLU(),
nn.Linear(128, n_actions)
)
def forward(self, x):
"""
:param x:
:return:
"""
return self.net(x)
def epsilon_greedy(epsilon: float, s, policy_net: DQN, n_actions: int) -> int:
if random.random() < epsilon:
return random.randrange(n_actions)
else:
return torch.argmax(policy_net(s)).item()
def train_and_save(weights_path="cartpole_dqn.pth", episodes=2_000, update_target_every=20):
env = gym.make('CartPole-v1')
n_states, n_actions = env.observation_space.shape[0], env.action_space.n
policy_net = DQN(n_states, n_actions) # Q Network
target_net = DQN(n_states, n_actions) # Target network
target_net.load_state_dict(policy_net.state_dict()) # same weights at start
target_net.eval()
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
gamma = 0.99 # discount factor
epsilon = 1.0 # Fréquence d'exploration initiale
eps_min = 0.01 # Fréquence d'exploration minimale
eps_decay = 0.999 # Facteur de réduction d'epsilon
memory = deque(maxlen=100_000)
batch_size = 64
for ep in range(episodes):
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
done, total_r = False, 0
while not done:
a = epsilon_greedy(epsilon, s, policy_net, n_actions)
ns, r, done, _, _ = env.step(a)
ns = torch.tensor(ns, dtype=torch.float32)
memory.append((s, a, r, ns, done))
s, total_r = ns, total_r + r
if len(memory) >= batch_size:
batch = random.sample(memory, batch_size)
s_b, a_b, r_b, ns_b, d_b = zip(*batch)
s_b = torch.stack(s_b)
ns_b = torch.stack(ns_b)
q_pred = policy_net(s_b).gather(1, torch.tensor(a_b).unsqueeze(1)).squeeze()
with torch.no_grad():
q_next = target_net(ns_b).max(1)[0]
q_target = torch.tensor(r_b, dtype=torch.float32) + \
gamma * q_next * (1 - torch.tensor(d_b, dtype=torch.float32))
loss = ((q_pred - q_target)**2).mean()
optimizer.zero_grad(); loss.backward(); optimizer.step()
epsilon = max(eps_min, epsilon * eps_decay)
if (ep + 1) % update_target_every == 0:
target_net.load_state_dict(policy_net.state_dict())
if (ep + 1) % 20 == 0:
print(f'Episode {ep + 1}: total reward {total_r:.1f}, epsilon {epsilon:.2f}')
env.close()
torch.save(policy_net.state_dict(), weights_path)
print(f'Training finished. Weights saved to {weights_path}')
return policy_net # <--- trained Q-network
def show(weights_path='cartpole_dqn.pth') -> None:
env = gym.make('CartPole-v1', render_mode='human')
qnet = DQN()
qnet.load_state_dict(torch.load(weights_path))
qnet.eval()
s, _ = env.reset()
s = torch.tensor(s, dtype=torch.float32)
done = False
total_r = 0.0
while not done:
a = torch.argmax(qnet(s)).item()
s_, r, done, _, _ = env.step(a)
total_r += r
s = torch.tensor(s_, dtype=torch.float32)
env.close()
print(f'Demonstration finished. {total_r:.1f}')
if __name__ == '__main__':
#trained_model = train_and_save()
show()