import random from collections import deque import gymnasium as gym import torch import torch.nn as nn import torch.optim as optim class DQN(nn.Module): def __init__(self, n_states=4, n_actions=2): """ Notre modèle à deux états, et peux faire deux actions (trouver à gauche ou à droite) :param n_state: :param n_action: """ super().__init__() self.net = nn.Sequential( nn.Linear(n_states, 128), nn.ReLU(), nn.Linear(128, n_actions) ) def forward(self, x): """ :param x: :return: """ return self.net(x) def epsilon_greedy(epsilon: float, s, policy_net: DQN, n_actions: int) -> int: if random.random() < epsilon: return random.randrange(n_actions) else: return torch.argmax(policy_net(s)).item() def train_and_save(weights_path="cartpole_dqn.pth", episodes=2_000, update_target_every=20): env = gym.make('CartPole-v1') n_states, n_actions = env.observation_space.shape[0], env.action_space.n policy_net = DQN(n_states, n_actions) # Q Network target_net = DQN(n_states, n_actions) # Target network target_net.load_state_dict(policy_net.state_dict()) # same weights at start target_net.eval() optimizer = optim.Adam(policy_net.parameters(), lr=1e-3) gamma = 0.99 # discount factor epsilon = 1.0 # Fréquence d'exploration initiale eps_min = 0.01 # Fréquence d'exploration minimale eps_decay = 0.999 # Facteur de réduction d'epsilon memory = deque(maxlen=100_000) batch_size = 64 for ep in range(episodes): s, _ = env.reset() s = torch.tensor(s, dtype=torch.float32) done, total_r = False, 0 while not done: a = epsilon_greedy(epsilon, s, policy_net, n_actions) ns, r, done, _, _ = env.step(a) ns = torch.tensor(ns, dtype=torch.float32) memory.append((s, a, r, ns, done)) s, total_r = ns, total_r + r if len(memory) >= batch_size: batch = random.sample(memory, batch_size) s_b, a_b, r_b, ns_b, d_b = zip(*batch) s_b = torch.stack(s_b) ns_b = torch.stack(ns_b) q_pred = policy_net(s_b).gather(1, torch.tensor(a_b).unsqueeze(1)).squeeze() with torch.no_grad(): q_next = target_net(ns_b).max(1)[0] q_target = torch.tensor(r_b, dtype=torch.float32) + \ gamma * q_next * (1 - torch.tensor(d_b, dtype=torch.float32)) loss = ((q_pred - q_target)**2).mean() optimizer.zero_grad(); loss.backward(); optimizer.step() epsilon = max(eps_min, epsilon * eps_decay) if (ep + 1) % update_target_every == 0: target_net.load_state_dict(policy_net.state_dict()) if (ep + 1) % 20 == 0: print(f'Episode {ep + 1}: total reward {total_r:.1f}, epsilon {epsilon:.2f}') env.close() torch.save(policy_net.state_dict(), weights_path) print(f'Training finished. Weights saved to {weights_path}') return policy_net # <--- trained Q-network def show(weights_path='cartpole_dqn.pth') -> None: env = gym.make('CartPole-v1', render_mode='human') qnet = DQN() qnet.load_state_dict(torch.load(weights_path)) qnet.eval() s, _ = env.reset() s = torch.tensor(s, dtype=torch.float32) done = False total_r = 0.0 while not done: a = torch.argmax(qnet(s)).item() s_, r, done, _, _ = env.step(a) total_r += r s = torch.tensor(s_, dtype=torch.float32) env.close() print(f'Demonstration finished. {total_r:.1f}') if __name__ == '__main__': #trained_model = train_and_save() show()