fix: the ai works !
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 22s
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 22s
This commit is contained in:
18
ex2.py
18
ex2.py
@@ -17,8 +17,8 @@ class DQN(nn.Module):
|
|||||||
"""
|
"""
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.net = nn.Sequential(
|
self.net = nn.Sequential(
|
||||||
nn.Linear(n_states, 64), nn.ReLU(),
|
nn.Linear(n_states, 128), nn.ReLU(),
|
||||||
nn.Linear(64, n_actions)
|
nn.Linear(128, n_actions)
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@@ -47,12 +47,12 @@ def train_and_save(weights_path="cartpole_dqn.pth", episodes=2_000, update_targe
|
|||||||
target_net.load_state_dict(policy_net.state_dict()) # same weights at start
|
target_net.load_state_dict(policy_net.state_dict()) # same weights at start
|
||||||
target_net.eval()
|
target_net.eval()
|
||||||
|
|
||||||
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3) # <- erreur ici
|
optimizer = optim.Adam(policy_net.parameters(), lr=1e-3)
|
||||||
gamma = 0.99 # discount factor
|
gamma = 0.99 # discount factor
|
||||||
epsilon = 1.0 # Fréquence d'exploration initiale
|
epsilon = 1.0 # Fréquence d'exploration initiale
|
||||||
eps_min = 0.05 # Fréquence d'exploration minimale
|
eps_min = 0.01 # Fréquence d'exploration minimale
|
||||||
eps_decay = 0.995 # Facteur de réduction d'epsilon
|
eps_decay = 0.999 # Facteur de réduction d'epsilon
|
||||||
memory = deque(maxlen=5000)
|
memory = deque(maxlen=100_000)
|
||||||
batch_size = 64
|
batch_size = 64
|
||||||
|
|
||||||
for ep in range(episodes):
|
for ep in range(episodes):
|
||||||
@@ -108,14 +108,16 @@ def show(weights_path='cartpole_dqn.pth') -> None:
|
|||||||
s, _ = env.reset()
|
s, _ = env.reset()
|
||||||
s = torch.tensor(s, dtype=torch.float32)
|
s = torch.tensor(s, dtype=torch.float32)
|
||||||
done = False
|
done = False
|
||||||
|
total_r = 0.0
|
||||||
while not done:
|
while not done:
|
||||||
a = torch.argmax(qnet(s)).item()
|
a = torch.argmax(qnet(s)).item()
|
||||||
s_, r, done, _, _ = env.step(a)
|
s_, r, done, _, _ = env.step(a)
|
||||||
|
total_r += r
|
||||||
s = torch.tensor(s_, dtype=torch.float32)
|
s = torch.tensor(s_, dtype=torch.float32)
|
||||||
env.close()
|
env.close()
|
||||||
print('Demonstration finished.')
|
print(f'Demonstration finished. {total_r:.1f}')
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
#trained_model = train_and_save()
|
trained_model = train_and_save()
|
||||||
show()
|
show()
|
||||||
|
|||||||
Reference in New Issue
Block a user