This commit is contained in:
68
sample.py
Normal file
68
sample.py
Normal file
@@ -0,0 +1,68 @@
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
labels = list("ABCDEFGHIJKL")
|
||||
|
||||
R = np.array([
|
||||
[0,1,0,0,0,0,0,0,0,0,0,0], #A
|
||||
[1,0,1,0,0,1,0,0,0,0,0,0], #B
|
||||
[0,1,0,0,0,0,1,0,0,0,0,0], #C
|
||||
[0,0,0,0,0,0,0,1,0,0,0,0], #D
|
||||
[0,0,0,0,0,0,0,0,1,0,0,0], #E
|
||||
[0,1,0,0,0,0,0,0,0,1,0,0], #F
|
||||
[0,0,1,0,0,0,0,1,0,0,0,0], #G
|
||||
[0,0,0,1,0,0,1,0,0,0,0,1], #H
|
||||
[0,0,0,0,1,0,0,0,0,1,0,0], #I
|
||||
[0,0,0,0,0,1,0,0,1,0,1,0], #J
|
||||
[0,0,0,0,0,0,0,0,0,1,0,1], #K
|
||||
[0,0,0,0,0,0,0,1,0,0,1,0], #L
|
||||
], dtype=float)
|
||||
|
||||
# Fait une matrice de même dimension que R remplie de 0
|
||||
Q = np.zeros_like(R)
|
||||
|
||||
print(type(R)) # recup le type
|
||||
print(R.ndim) # 2 -> matrice 2d
|
||||
print(R.shape) # (3, 3) -> 3 lignes 3 colonnes
|
||||
print(R.dtype) # float64
|
||||
print(R.size) # 9 éléments
|
||||
print(R.strides) # e.g. (24,8)
|
||||
|
||||
# huperparamètre
|
||||
|
||||
gamma = 0.75
|
||||
alpha = 0.90
|
||||
n_iters = 1000
|
||||
|
||||
rng = np.random.default_rng(0)
|
||||
|
||||
# Train Q-Learning for goal 'G'
|
||||
goal_label = 'G'
|
||||
goal = labels.index(goal_label)
|
||||
R_goal = R.copy()
|
||||
R_goal[goal, goal] = 1000.0
|
||||
|
||||
for _ in range(n_iters):
|
||||
s = rng.integers(0, R.shape[0]) # random current state
|
||||
actions = np.where(R_goal[s] > 0)[0] # valid actions
|
||||
if actions.size == 0:
|
||||
continue
|
||||
a = rng.choice(actions) # random valid action
|
||||
s_next = a # transition to next state
|
||||
# Calcul du time difference
|
||||
TD = R_goal[s, a] + gamma * Q[s_next].max() - Q[s, a]
|
||||
# Equation de Bellman
|
||||
Q[s, a] += alpha * TD
|
||||
|
||||
|
||||
def best_path(start_label: str, goal_label: str):
|
||||
s = labels.index(start_label)
|
||||
g = labels.index(goal_label)
|
||||
path = [start_label]
|
||||
while s!= g:
|
||||
s = np.argmax(Q[s]) # ici, on récupère l'action
|
||||
path.append(labels[s])
|
||||
return path
|
||||
|
||||
|
||||
print("Path E -> G: ", " -> ".join(best_path('E', 'G')))
|
||||
Reference in New Issue
Block a user