First commit
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 23s

This commit is contained in:
Namu
2025-09-19 18:20:43 +02:00
commit 3d8dab7f06
6 changed files with 226 additions and 0 deletions

View File

@@ -0,0 +1,32 @@
name: SonarQube Scan
on:
push:
branches:
- '**'
pull_request:
branches:
- '**'
jobs:
sonarqube:
name: SonarQube Trigger
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Download SonarQube Scanner
run: |
curl -sSLo sonar-scanner.zip https://binaries.sonarsource.com/Distribution/sonar-scanner-cli/sonar-scanner-cli-5.0.1.3006-linux.zip
unzip sonar-scanner.zip
- name: Run SonarQube Scan
run: |
./sonar-scanner-*/bin/sonar-scanner \
-Dsonar.projectKey=tp1-iaavancee \
-Dsonar.sources=. \
-Dsonar.host.url=${{ secrets.SONARQUBE_HOST }} \
-Dsonar.login=${{ secrets.SONARQUBE_TOKEN }}

5
.gitignore vendored Normal file
View File

@@ -0,0 +1,5 @@
# Pycharm
.idea/
# virtual env
.venv/

34
README.md Normal file
View File

@@ -0,0 +1,34 @@
# TP1 IA Avancée
Le but de ce tp est de faire se déplacer une IA dans un entrepot en lui donnant un point de départ et d'arrivé.
## Install
Tout d'abord créer un venv nommé `venv`
```bash
python -m venv venv
```
Puis pour activer le venv :
- Windows :
```powershell
venv\Scripts\activate
```
- Linux :
```bash
source venv/bin/activate
```
- MacOS :
Je sais pas, GLHF
Pour installer les librairies dans un venv, utilisez cette commande :
```bash
pip install -r requirements.txt
```
## Authors
[Thomas SAZERAT]()

87
ex1.py Normal file
View File

@@ -0,0 +1,87 @@
import numpy as np
import pandas as pd
from typing import List
def best_path(start_label: str, goal_label: str) -> List[str]:
s = labels.index(start_label)
g = labels.index(goal_label)
path = [start_label]
while s!= g:
a = np.argmax(Q[s]) # ici, on récupère l'action
next = NEXT[s, a]
if next is None:
raise f'Action impossible State{s} Action{a} NextState{next}'
s = labels.index(next)
path.append(next)
return path
labels = list("ABCDEFGHIJKL")
R = np.array([
# UP DOWN LEFT RIGHT
[0,0,0,1], #A
[0,1,1,1], #B
[0,1,1,0], #C
[0,1,0,0], #D
[0,1,0,0], #E
[1,1,0,0], #F
[1,0,0,1], #G
[1,1,1,0], #H
[1,0,0,1], #I
[1,0,1,1], #J
[0,0,1,1], #K
[1,0,1,0], #L
], dtype=float)
# Fait une matrice de même dimension que R remplie de 0
Q = np.zeros_like(R)
# on a l'état courant et l'action en cours, il nous faut st+1 (la prochaine action)
NEXT = np.array([
# UP DOWN LEFT RIGHT
[None, None, None, 'B'], #A
[None, 'F', 'A', 'C'], #B
[None, 'G', 'B', None], #C
[None, 'H', None, None], #D
[None, 'I', None, None], #E
['B', 'J', None, None], #F
['C', None, None, 'H'], #G
['D', 'L', 'G', None], #H
['E', None, None, 'J'], #I
['F', None, 'I', 'K'], #J
[None, None, 'J', 'L'], #K
['H', None, 'K', None], #L
])
# Hyperparameters
gamma = 0.75
alpha = 0.90
n_iters = 1_000
rng = np.random.default_rng(0)
# augmente le reward pour les directions qui mènent à G (C DOWN & H LEFT)
goal_opt1 = labels.index('C')
down_index = 1
goal_opt2 = labels.index('H')
left_index = 2
R_goal = R.copy()
R_goal[goal_opt1, down_index] = 1_000.0
R_goal[goal_opt2, left_index] = 1_000.0
for _ in range(n_iters):
s = rng.integers(0, R.shape[0]) # random current state
actions = np.where(R_goal[s] > 0)[0] # valid actions
if actions.size == 0:
continue
a = rng.choice(actions) # random valid action
s_next = a # transition to next state
TD = R_goal[s, a] + gamma * Q[s_next].max() - Q[s, a]
Q[s, a] += alpha * TD
print("Matrice Q: ")
print(Q)
print("Path E -> G: ", " -> ".join(best_path('E', 'G')))

BIN
requirements.txt Normal file

Binary file not shown.

68
sample.py Normal file
View File

@@ -0,0 +1,68 @@
import numpy as np
import pandas as pd
labels = list("ABCDEFGHIJKL")
R = np.array([
[0,1,0,0,0,0,0,0,0,0,0,0], #A
[1,0,1,0,0,1,0,0,0,0,0,0], #B
[0,1,0,0,0,0,1,0,0,0,0,0], #C
[0,0,0,0,0,0,0,1,0,0,0,0], #D
[0,0,0,0,0,0,0,0,1,0,0,0], #E
[0,1,0,0,0,0,0,0,0,1,0,0], #F
[0,0,1,0,0,0,0,1,0,0,0,0], #G
[0,0,0,1,0,0,1,0,0,0,0,1], #H
[0,0,0,0,1,0,0,0,0,1,0,0], #I
[0,0,0,0,0,1,0,0,1,0,1,0], #J
[0,0,0,0,0,0,0,0,0,1,0,1], #K
[0,0,0,0,0,0,0,1,0,0,1,0], #L
], dtype=float)
# Fait une matrice de même dimension que R remplie de 0
Q = np.zeros_like(R)
print(type(R)) # recup le type
print(R.ndim) # 2 -> matrice 2d
print(R.shape) # (3, 3) -> 3 lignes 3 colonnes
print(R.dtype) # float64
print(R.size) # 9 éléments
print(R.strides) # e.g. (24,8)
# huperparamètre
gamma = 0.75
alpha = 0.90
n_iters = 1000
rng = np.random.default_rng(0)
# Train Q-Learning for goal 'G'
goal_label = 'G'
goal = labels.index(goal_label)
R_goal = R.copy()
R_goal[goal, goal] = 1000.0
for _ in range(n_iters):
s = rng.integers(0, R.shape[0]) # random current state
actions = np.where(R_goal[s] > 0)[0] # valid actions
if actions.size == 0:
continue
a = rng.choice(actions) # random valid action
s_next = a # transition to next state
# Calcul du time difference
TD = R_goal[s, a] + gamma * Q[s_next].max() - Q[s, a]
# Equation de Bellman
Q[s, a] += alpha * TD
def best_path(start_label: str, goal_label: str):
s = labels.index(start_label)
g = labels.index(goal_label)
path = [start_label]
while s!= g:
s = np.argmax(Q[s]) # ici, on récupère l'action
path.append(labels[s])
return path
print("Path E -> G: ", " -> ".join(best_path('E', 'G')))