Files
tp_ana_num/ex5.py
2025-10-15 15:47:03 +02:00

57 lines
1.3 KiB
Python

class Point:
def __init__(self, x: float, y: float):
self.x = x
self.y = y
def interpolation_lagrange(points: list[Point], x: float) -> float:
interpolation: float = 0.
n = len(points)
for i in range(n):
term: float = 1. # 0.0 will always give 0, it's a product ! So lets put 1
# Lagrange L(x)
for k in range(n):
if k != i:
term *= ((x - points[k].x) / (points[i].x - points[k].x))
# interpolation with a piece of Lagrange (y_i)
interpolation += term * points[i].y
return interpolation
def interpolation_newton(points: list[Point], x: float) -> float:
interpolation = 0. # alpha sum
n = len(points)
for i in range(n):
a_i = 1.
for k in range(n-1):
a_i *= (points[k+1].y - points[k].y) / (points[k+1].x - points[k].x)
return interpolation
def ex1() -> None:
p1 = Point(-1, 0)
p2 = Point(0, -1)
p3 = Point(1, 0)
p4 = Point(3, 70)
points = []
points.append(p1)
points.append(p2)
points.append(p3)
points.append(p4)
"""
"""
racine_x_2 = interpolation_lagrange(points, 2.0)
racine_x_3 = interpolation_lagrange(points, 3.0)
print(f'racine X = 2 = {racine_x_2}, racine X = 3 = {racine_x_3}')
if __name__ == '__main__':
ex1()