import random import numpy as np import matplotlib.pyplot as plt def trapeze_formule(f, a: float, b: float, n: int) -> float: """ :param f: la fonction f (bien passer une fonction ou une lambda) :param a: la petite borne :param b: la grande borne :param n: nombre de "tranche" de calcul :return: """ # dx = (b-a) / n dx = (b - a) / n # somme_inferieure = sum de i = 1 jusqu'a n - 1 faire f(xi) somme_inferieure = 0. for i in range(1, n): xi = a + i * dx somme_inferieure += f(xi) # I = (delta X / 2) * [f(a) + f(b) + 2 * somme_inferieure ] I = (dx / 2) * (f(a) + f(b) + 2 * somme_inferieure) return I def simpson(f, a: float, b: float, n: int) -> float: if n % 2 != 0: raise ValueError(f'n must be even, got {n}') dx = (b - a) / n somme_paire = 0. somme_impaire = 0. for i in range(1, n): xi = a + i * dx if i % 2 == 0: somme_paire += f(xi) else: somme_impaire += f(xi) I = (dx / 3) * (f(a) + f(b) + 4 * somme_impaire + 2 * somme_paire) return I # Les b possibles dans Newton Cotes POIDS = { 2: [1/2,1/2], 3: [1/6, 4/6, 1/6], 4: [1/8, 3/8, 3/8, 1/8], 5: [ 7 / 90, 32 / 90, 12 / 90, 32 / 90, 7 / 90, ], 6: [19/288, 75/288, 50/288, 50/288, 75/255, 19/255], 7: [41/840, 216/840, 27/840, 272/840, 27/840, 216/840, 41/840] } def newton_cotes(f, a: float, b: float, s: int, n: int) -> float: weights = POIDS[s+1] # Poids pour l'ordre s h = (b - a) / n Aj = 0. for j in range(n): somme = 0. x_j = a + j * h for i in range(s): x = x_j + (i / (s - 1)) * h # points à l'intérieur du sous-intervalle somme += weights[i] * f(x) somme += h / (s-1) # facteur h/(s-1) selon Newton-Cotes Aj += somme * h return Aj def exercice1(): f = lambda x: x ** 2 approx = trapeze_formule(f, a=0, b=1, n=10) print(approx) g = lambda x : np.sin(x) trapeze1 = trapeze_formule(g, a=0, b=np.pi, n=100) trapeze2 = trapeze_formule(g, a=0, b=np.pi, n=200) simpson1 = simpson(g, a=0, b=np.pi, n=100) simpson2 = simpson(g, a=0, b=np.pi, n=200) newton1 = newton_cotes(g, a=0, b=np.pi, n=100, s=4) newton2 = newton_cotes(g, a=0, b=np.pi, n=200, s=4) # le vrai résultat est 2. print(f'{trapeze1}, {trapeze2} erreur: {2-trapeze1} {2-trapeze2}') print(f'{simpson1}, {simpson2} erreur: {2 - simpson1} {2 - simpson2}') print(f'{newton1}, {newton2} erreur: {2 - newton1} {2 - newton2}') def monte_carlo_2d(f, a: float, b: float, c: float, d: float, n: int) -> float: """ :param f: la fonction :param a: borne a (pour x) :param b: borne b (pour x) :param c: borne c (pour y) :param d: borne d (pour y) :param n: nombre de tirages aléatoire (N grand → epsilon petit) :return: I """ sum = 0. points_x = [] points_y = [] for i in range(1, n): x = a + (b - a) * random.random() y = c + (d - c) * random.random() if a < x < b and c < y < d: sum += f(x, y) points_x.append(x) points_y.append(y) I = (sum / n) * (b - a) * (d - c) epsilon = np.abs(.58 - I) print(f'Err absolue : {epsilon}') plt.scatter(points_x, points_y, color='blue') plt.title('Surface fonction') plt.show() return I def exercice2(): g = lambda x, y: 1 g2 = lambda x, y: np.exp(-x ** 2 - y ** 2) ig = monte_carlo_2d(g, a=0, b=1, c=0, d=1, n=10_000) ig2 = monte_carlo_2d(g2, a=0, b=1, c=0, d=1, n=10_000) print(f'I (g) = {ig}, I (g2) = {ig2}') if __name__ == '__main__': #exercice1() exercice2()