Feat: Add tp5
This commit is contained in:
136
ex3.py
Normal file
136
ex3.py
Normal file
@@ -0,0 +1,136 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
# L'inverse d'une diagonale
|
||||
# D_inv = np.diag(1 / np.diag(A))
|
||||
|
||||
|
||||
def to_D(A: np.array) -> np.array:
|
||||
D = np.zeros_like(A)
|
||||
for i in range(len(A)):
|
||||
D[i, i] = A[i, i]
|
||||
return D
|
||||
|
||||
|
||||
def to_L(A: np.array) -> np.array:
|
||||
L = np.zeros_like(A)
|
||||
for i in range(len(A)):
|
||||
for j in range(len(A)):
|
||||
if i < j:
|
||||
L[i, j] = A[i, j]
|
||||
return L
|
||||
|
||||
|
||||
def to_U(A: np.array) -> np.array:
|
||||
U = np.zeros_like(A)
|
||||
for i in range(len(A)):
|
||||
for j in range(len(A)):
|
||||
if i > j:
|
||||
U[i, j] = A[i, j]
|
||||
return U
|
||||
|
||||
|
||||
def diag_strict_dominante(A) -> bool:
|
||||
diag_sum = 0
|
||||
for i in range(len(A)):
|
||||
diag_sum += A[i, i]
|
||||
other_sum = 0
|
||||
for i in range(len(A)):
|
||||
for j in range(len(A)):
|
||||
if i != j:
|
||||
other_sum += A[i, j]
|
||||
return diag_sum > other_sum
|
||||
|
||||
|
||||
def jacobi(A, b):
|
||||
if not diag_strict_dominante(A):
|
||||
raise Exception('A doit être à diagnonale strictement dominante')
|
||||
|
||||
L = to_L(A)
|
||||
U = to_U(A)
|
||||
x0 = np.array([0,0,0])
|
||||
epsilon = 1e-6
|
||||
max_iter = 100_000
|
||||
|
||||
x = x0
|
||||
for k in range(max_iter):
|
||||
x_new = np.diag(1 / np.diag(A)) @ ((L + U) @ x) + np.diag(1 / np.diag(A)) @ b
|
||||
if np.linalg.norm(x_new - x, ord=2) < epsilon or np.linalg.norm(b - A @ x_new, ord=2) < epsilon:
|
||||
break
|
||||
x = x_new
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def gauss_seidel(A, b):
|
||||
x0 = np.array([0, 0, 0])
|
||||
|
||||
D = to_D(A)
|
||||
L = to_L(A)
|
||||
U = to_U(A)
|
||||
epsilon = 1e-6
|
||||
done = False
|
||||
|
||||
x = x0
|
||||
|
||||
while not done:
|
||||
x_new = np.linalg.inv(D - L) @ U @ x + np.linalg.inv(D - L) @ b
|
||||
|
||||
done: bool = np.linalg.norm(x_new - x, ord=2) < epsilon
|
||||
x = x_new
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def relaxation(A, b, omega=1.0, epsilon=1e-6, max_iter=100_000):
|
||||
D = np.diag(np.diag(A))
|
||||
L = np.tril(A, k=-1)
|
||||
U = np.triu(A, k=1)
|
||||
x = np.zeros_like(b, dtype=float)
|
||||
|
||||
# Pré-calculer (D - ωL)^(-1) une seule fois
|
||||
inv_D_omega_L = np.linalg.inv(D - omega * L)
|
||||
|
||||
if omega == 1:
|
||||
return gauss_seidel(A, b)
|
||||
|
||||
for _ in range(max_iter):
|
||||
x_new = inv_D_omega_L @ ((1 - omega) * D @ x + omega * (U @ x + b))
|
||||
if np.linalg.norm(x_new - x, ord=2) < epsilon:
|
||||
return x_new
|
||||
x = x_new
|
||||
|
||||
raise RuntimeError("La méthode de relaxation n'a pas convergé.")
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
A = np.array([
|
||||
[8,4,1],
|
||||
[1,6,-5],
|
||||
[1,-2,-6]
|
||||
])
|
||||
|
||||
b = np.array([1,0,0])
|
||||
|
||||
D = to_D(A)
|
||||
L = to_L(A)
|
||||
U = to_U(A)
|
||||
|
||||
res_jacobi = jacobi(A, b)
|
||||
print(res_jacobi)
|
||||
|
||||
res_gauss = gauss_seidel(A, b)
|
||||
print(res_gauss)
|
||||
|
||||
# je la commente car omega = 1 utilise la ^m fonction que gauss_seidel
|
||||
#res_relaxation_1 = relaxation(A, b, 1)
|
||||
#print(res_relaxation_1)
|
||||
|
||||
res_relaxation_less_1 = relaxation(A, b, 0)
|
||||
print(res_relaxation_less_1)
|
||||
|
||||
res_relaxation_2 = relaxation(A, b, 2)
|
||||
print(res_relaxation_2)
|
||||
|
||||
print('fini')
|
||||
Reference in New Issue
Block a user