Feat: Add tp5

This commit is contained in:
Namu
2025-10-15 15:32:14 +02:00
commit bdeaa7e415
7 changed files with 305 additions and 0 deletions

136
ex3.py Normal file
View File

@@ -0,0 +1,136 @@
import numpy as np
# L'inverse d'une diagonale
# D_inv = np.diag(1 / np.diag(A))
def to_D(A: np.array) -> np.array:
D = np.zeros_like(A)
for i in range(len(A)):
D[i, i] = A[i, i]
return D
def to_L(A: np.array) -> np.array:
L = np.zeros_like(A)
for i in range(len(A)):
for j in range(len(A)):
if i < j:
L[i, j] = A[i, j]
return L
def to_U(A: np.array) -> np.array:
U = np.zeros_like(A)
for i in range(len(A)):
for j in range(len(A)):
if i > j:
U[i, j] = A[i, j]
return U
def diag_strict_dominante(A) -> bool:
diag_sum = 0
for i in range(len(A)):
diag_sum += A[i, i]
other_sum = 0
for i in range(len(A)):
for j in range(len(A)):
if i != j:
other_sum += A[i, j]
return diag_sum > other_sum
def jacobi(A, b):
if not diag_strict_dominante(A):
raise Exception('A doit être à diagnonale strictement dominante')
L = to_L(A)
U = to_U(A)
x0 = np.array([0,0,0])
epsilon = 1e-6
max_iter = 100_000
x = x0
for k in range(max_iter):
x_new = np.diag(1 / np.diag(A)) @ ((L + U) @ x) + np.diag(1 / np.diag(A)) @ b
if np.linalg.norm(x_new - x, ord=2) < epsilon or np.linalg.norm(b - A @ x_new, ord=2) < epsilon:
break
x = x_new
return x
def gauss_seidel(A, b):
x0 = np.array([0, 0, 0])
D = to_D(A)
L = to_L(A)
U = to_U(A)
epsilon = 1e-6
done = False
x = x0
while not done:
x_new = np.linalg.inv(D - L) @ U @ x + np.linalg.inv(D - L) @ b
done: bool = np.linalg.norm(x_new - x, ord=2) < epsilon
x = x_new
return x
def relaxation(A, b, omega=1.0, epsilon=1e-6, max_iter=100_000):
D = np.diag(np.diag(A))
L = np.tril(A, k=-1)
U = np.triu(A, k=1)
x = np.zeros_like(b, dtype=float)
# Pré-calculer (D - ωL)^(-1) une seule fois
inv_D_omega_L = np.linalg.inv(D - omega * L)
if omega == 1:
return gauss_seidel(A, b)
for _ in range(max_iter):
x_new = inv_D_omega_L @ ((1 - omega) * D @ x + omega * (U @ x + b))
if np.linalg.norm(x_new - x, ord=2) < epsilon:
return x_new
x = x_new
raise RuntimeError("La méthode de relaxation n'a pas convergé.")
if __name__ == '__main__':
A = np.array([
[8,4,1],
[1,6,-5],
[1,-2,-6]
])
b = np.array([1,0,0])
D = to_D(A)
L = to_L(A)
U = to_U(A)
res_jacobi = jacobi(A, b)
print(res_jacobi)
res_gauss = gauss_seidel(A, b)
print(res_gauss)
# je la commente car omega = 1 utilise la ^m fonction que gauss_seidel
#res_relaxation_1 = relaxation(A, b, 1)
#print(res_relaxation_1)
res_relaxation_less_1 = relaxation(A, b, 0)
print(res_relaxation_less_1)
res_relaxation_2 = relaxation(A, b, 2)
print(res_relaxation_2)
print('fini')