Fix: Correct dichotimie

This commit is contained in:
Namu
2025-10-19 21:03:35 +02:00
parent 128e07d420
commit b559ade3e9
2 changed files with 14 additions and 15 deletions

5
ex3.py
View File

@@ -72,11 +72,8 @@ def relaxation(A, b, omega=1.0, epsilon=1e-6, max_iter=100_000):
# Pré-calculer (D - ωL)^(-1) une seule fois # Pré-calculer (D - ωL)^(-1) une seule fois
inv_D_omega_L = np.linalg.inv(D - omega * L) inv_D_omega_L = np.linalg.inv(D - omega * L)
if omega == 1:
return gauss_seidel(A, b)
for _ in range(max_iter): for _ in range(max_iter):
x_new = inv_D_omega_L @ ((1 - omega) * D @ x + omega * (U @ x + b)) x_new = inv_D_omega_L @ (omega * (b - U @ x) - omega * L @ x + (1 - omega) * D @ x)
if np.linalg.norm(x_new - x, ord=2) < epsilon: if np.linalg.norm(x_new - x, ord=2) < epsilon:
return x_new return x_new
x = x_new x = x_new

24
ex5.py
View File

@@ -1,29 +1,31 @@
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
dich_steps = []
new_raph_steps = [] new_raph_steps = []
dich_steps = []
def f(x) -> float: def f(x) -> float:
return np.exp(x) - 2 * np.cos(x) return np.exp(x) - 2 * np.cos(x)
def dichotomie(x_0, a, b, epsilon, n=0) -> float: def dichotomie(a, b, epsilon=1e-6, n=0, steps=None) -> float:
delta = f(a) * f(x_0) if steps is None:
x_1 = (a + b) / 2 steps = []
dich_steps.append(x_1) x = (a + b) / 2
delta = f(a) * f(x)
dich_steps.append(x) # si on veut afficher les étapes
if np.abs(b - a) <= epsilon: if np.abs(b - a) <= epsilon:
return x_1 return x
if delta < 0: if delta < 0:
return dichotomie(x_1, a, x_0, epsilon, n+1) return dichotomie(a, x, epsilon, n+1)
elif delta == 0: elif delta == 0:
return x_1 return x
else: else:
return dichotomie(x_1, x_0, b, epsilon, n+1) return dichotomie(x, b, epsilon, n+1)
def f_prime(x) -> float: def f_prime(x) -> float:
@@ -72,7 +74,7 @@ def ex1() -> None:
plt.grid() plt.grid()
plt.show() plt.show()
dichotomie_res = dichotomie(0, 0, 1, 10e-6) dichotomie_res = dichotomie(0, 1, 10e-6)
print(dichotomie_res) print(dichotomie_res)
plt.plot(dich_steps) plt.plot(dich_steps)