Feat: Ajoute l'exercice 1 de l'interpolation & extrapolation
This commit is contained in:
104
p1/ex3.py
Normal file
104
p1/ex3.py
Normal file
@@ -0,0 +1,104 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
# L'inverse d'une diagonale
|
||||
# D_inv = np.diag(1 / np.diag(A))
|
||||
|
||||
|
||||
def diag_strict_dominante(A) -> bool:
|
||||
"""
|
||||
Pour chaque ligne, il faut que la somme des coefs non-diagonaux soit inférieure au coef diagonal
|
||||
TOUT EST EN VALEUR ABSOLUE.
|
||||
:param A:
|
||||
:return:
|
||||
"""
|
||||
A = np.array(A)
|
||||
n = len(A)
|
||||
for i in range(n):
|
||||
diag = abs(A[i,i])
|
||||
row_sum = np.sum(np.abs(A[i,:])) - diag # On fait la somme de toute la ligne puis on soustrait le coef diagonal
|
||||
if diag <= row_sum:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def jacobi(A, b, epsilon=1e-6, max_iter=100_000):
|
||||
if not diag_strict_dominante(A):
|
||||
raise ValueError("A doit être à diagonale strictement dominante")
|
||||
|
||||
x = np.zeros_like(b, dtype=float)
|
||||
L = np.tril(A, k=-1) # Partie triangulaire inférieure (sans diagonale)
|
||||
U = np.triu(A, k=1) # Partie triangulaire supérieure (sans diagonale)
|
||||
|
||||
for _ in range(max_iter):
|
||||
x_new = np.diag(1 / np.diag(A)) @ (b - (L + U) @ x)
|
||||
if np.linalg.norm(x_new - x, ord=2) < epsilon:
|
||||
break
|
||||
x = x_new
|
||||
|
||||
return x_new
|
||||
|
||||
|
||||
def gauss_seidel(A, b, epsilon=1e-6, max_iter=100_000):
|
||||
D = np.diag(np.diag(A))
|
||||
L = np.tril(A, k=-1)
|
||||
U = np.triu(A, k=1)
|
||||
x = np.zeros_like(b, dtype=float)
|
||||
for _ in range(max_iter):
|
||||
x_old = x.copy()
|
||||
# Résolution de (D - L) x = U x_old + b
|
||||
x = np.linalg.solve(D - L, -U @ x_old + b)
|
||||
if np.linalg.norm(x - x_old, ord=2) < epsilon:
|
||||
return x
|
||||
raise RuntimeError('Gauss-Seidel : convergence non atteinte')
|
||||
|
||||
|
||||
def relaxation(A, b, omega=1.0, epsilon=1e-6, max_iter=100_000):
|
||||
D = np.diag(np.diag(A))
|
||||
L = np.tril(A, k=-1)
|
||||
U = np.triu(A, k=1)
|
||||
x = np.zeros_like(b, dtype=float)
|
||||
|
||||
# Pré-calculer (D - ωL)^(-1) une seule fois
|
||||
inv_D_omega_L = np.linalg.inv(D - omega * L)
|
||||
|
||||
for _ in range(max_iter):
|
||||
x_new = inv_D_omega_L @ (omega * (b - U @ x) - omega * L @ x + (1 - omega) * D @ x)
|
||||
if np.linalg.norm(x_new - x, ord=2) < epsilon:
|
||||
return x_new
|
||||
x = x_new
|
||||
|
||||
raise RuntimeError("La méthode de relaxation n'a pas convergé.")
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
A = np.array([
|
||||
[8,4,1],
|
||||
[1,6,-5],
|
||||
[1,-2,-6]
|
||||
])
|
||||
|
||||
b = np.array([1,0,0])
|
||||
|
||||
D = np.diag(A)
|
||||
L = np.tril(A)
|
||||
U = np.triu(A)
|
||||
|
||||
res_jacobi = jacobi(A, b)
|
||||
print(res_jacobi)
|
||||
|
||||
res_gauss = gauss_seidel(A, b)
|
||||
print(res_gauss)
|
||||
|
||||
# je la commente car omega = 1 utilise la ^m fonction que gauss_seidel
|
||||
#res_relaxation_1 = relaxation(A, b, 1)
|
||||
#print(res_relaxation_1)
|
||||
|
||||
res_relaxation_less_1 = relaxation(A, b, 0)
|
||||
print(res_relaxation_less_1)
|
||||
|
||||
res_relaxation_2 = relaxation(A, b, 2)
|
||||
print(res_relaxation_2)
|
||||
|
||||
print('fini')
|
||||
Reference in New Issue
Block a user