Feat: Ajoute les fonctions de calcul d'equa diff
This commit is contained in:
87
tp8.py
87
tp8.py
@@ -1,24 +1,93 @@
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def euler(f, n: int, delta_x: float, x_0: float, y_0: float) -> list[float]:
|
||||
results = []
|
||||
def euler(f, n: int, h: float, x_0: float, y_0: float) -> tuple[list[float], list[float]]:
|
||||
"""
|
||||
|
||||
:param f: la fonction f (ou y)
|
||||
:param n: jusqu'où va le calcul (le nombre d'itérations)
|
||||
:param h: le pas de chaque itération
|
||||
:param x_0: dans la condition initiale, c'est la valeur passée en entrée de f
|
||||
:param y_0: dans la condition initiale, c'est la valeur de sortie de f.
|
||||
:return:
|
||||
"""
|
||||
results_x = [x_0]
|
||||
results_y = [y_0]
|
||||
# h c'est delta_x
|
||||
x = x_0
|
||||
y = y_0
|
||||
for i in range(n):
|
||||
x = x + delta_x
|
||||
y = y + delta_x * f(x, y)
|
||||
results.append(y)
|
||||
if i < 4:
|
||||
x = x + h
|
||||
y = y + h * f(x, y)
|
||||
else:
|
||||
h = .3
|
||||
x = x + h
|
||||
y = y + h * f(x, y)
|
||||
results_x.append(x)
|
||||
results_y.append(y)
|
||||
|
||||
return results
|
||||
return results_x, results_y
|
||||
|
||||
|
||||
def runge_kutta(f, n: int, h: float, x_0: float, y_0: float) -> tuple[list[float], list[float]]:
|
||||
results_x = [x_0]
|
||||
results_y = [y_0]
|
||||
x = x_0
|
||||
y = y_0
|
||||
for i in range(n):
|
||||
if i < 4:
|
||||
k_1 = f(x, y)
|
||||
k_2 = f(x + (h / 2), y + (h / 2) * k_1)
|
||||
x = x + h
|
||||
y = y + h * k_2
|
||||
else:
|
||||
h = .3
|
||||
k_1 = f(x, y)
|
||||
k_2 = f(x + (h / 2), y + (h / 2) * k_1)
|
||||
x = x + h
|
||||
y = y + h * k_2
|
||||
results_x.append(x)
|
||||
results_y.append(y)
|
||||
|
||||
return results_x, results_y
|
||||
|
||||
|
||||
def taylor(f, f_derive_x, f_derive_y, n: int, h: float, x_0: float, y_0: float) -> tuple[list[float], list[float]]:
|
||||
results_x = [x_0]
|
||||
results_y = [y_0]
|
||||
|
||||
x = x_0
|
||||
y = y_0
|
||||
|
||||
for i in range(n):
|
||||
if i < 4:
|
||||
x = x + h
|
||||
y = y + h * f(x, y) + (h ** 2) / 2 * (f_derive_x(x, y) + f_derive_y(x, y) * f(x, y))
|
||||
else:
|
||||
h = .3
|
||||
x = x + h
|
||||
y = y + h * f(x, y) + (h ** 2) / 2 * (f_derive_x(x, y) + f_derive_y(x, y) * f(x, y))
|
||||
results_x.append(x)
|
||||
results_y.append(y)
|
||||
|
||||
return results_x, results_y
|
||||
|
||||
|
||||
def exercice1() -> None:
|
||||
f = lambda x, y: -2 * x * y + 1
|
||||
results = euler(f, n=20, x_0=0, y_0=1, delta_x=.2)
|
||||
plt.plot(results)
|
||||
plt.title('Euler')
|
||||
f_derive_x = lambda x, y: -2 * y + 1
|
||||
f_derive_y = lambda x, y: -2 * x + 1
|
||||
|
||||
results_x_euler, results_y_euler = euler(f, n=5, x_0=0, y_0=1, h=.2)
|
||||
results_x_runge, results_y_runge = runge_kutta(f, n=5, x_0=0, y_0=1, h=.2)
|
||||
results_x_taylor, results_y_taylor = taylor(f, f_derive_x, f_derive_y, 5, x_0=0, y_0=1, h=.2)
|
||||
|
||||
plt.plot(results_x_euler, results_y_euler, color='green')
|
||||
plt.plot(results_x_runge, results_y_runge, color='red')
|
||||
plt.plot(results_x_taylor, results_y_taylor, color='blue')
|
||||
|
||||
plt.title('La giga fonction pour les equations différentielles. (mieux que le sex garanti 3 ans)')
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user