Files
tp2-iaavancee/tp7_gpt_exemple.py
Namu 140ac03222
All checks were successful
SonarQube Scan / SonarQube Trigger (push) Successful in 24s
refactor: add 2 spaces in tp7 between function
2025-10-20 14:02:01 +02:00

114 lines
3.8 KiB
Python

import gymnasium as gym
import torch
import torch.nn as nn
import torch.optim as optim
from torch.distributions import Normal
# -----------------------------
# Réseau Actor-Critic
# -----------------------------
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=128):
super().__init__()
self.shared = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU()
)
self.actor_mean = nn.Linear(hidden_dim, action_dim)
self.actor_logstd = nn.Parameter(torch.zeros(action_dim))
self.critic = nn.Linear(hidden_dim, 1)
def forward(self, x):
x = self.shared(x)
mean = self.actor_mean(x)
logstd = self.actor_logstd.expand_as(mean)
dist = Normal(mean, logstd.exp())
value = self.critic(x)
return dist, value
# -----------------------------
# Agent A2C
# -----------------------------
class A2CAgent:
def __init__(self, env_name, gamma=0.99, lr=1e-3):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.env = gym.make(env_name)
self.gamma = gamma
state_dim = self.env.observation_space.shape[0]
action_dim = self.env.action_space.shape[0]
self.model = ActorCritic(state_dim, action_dim).to(self.device)
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
def select_action(self, state):
state = torch.FloatTensor(state).to(self.device)
dist, _ = self.model(state)
action = dist.sample()
log_prob = dist.log_prob(action).sum(dim=-1)
return action.cpu().numpy(), log_prob
def compute_returns(self, rewards, masks, next_value):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + self.gamma * R * masks[step]
returns.insert(0, R)
return returns
def update(self, trajectory, next_state):
states = torch.FloatTensor([t[0] for t in trajectory]).to(self.device)
actions = torch.FloatTensor([t[1] for t in trajectory]).to(self.device)
log_probs = torch.stack([t[2] for t in trajectory]).to(self.device)
rewards = [t[3] for t in trajectory]
masks = [t[4] for t in trajectory]
with torch.no_grad():
_, next_value = self.model(torch.FloatTensor(next_state).to(self.device))
next_value = next_value.squeeze()
returns = self.compute_returns(rewards, masks, next_value)
returns = torch.FloatTensor(returns).to(self.device)
dist, values = self.model(states)
advantages = returns - values.squeeze()
actor_loss = -(log_probs * advantages.detach()).mean()
critic_loss = advantages.pow(2).mean()
loss = actor_loss + 0.5 * critic_loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
def train(self, max_steps=2000, update_every=5):
state, _ = self.env.reset()
trajectory = []
for step in range(max_steps):
action, log_prob = self.select_action(state)
next_state, reward, terminated, truncated, _ = self.env.step(action)
done = terminated or truncated
mask = 0.0 if done else 1.0 # <-- correction ici
trajectory.append((state, action, log_prob, reward, mask))
state = next_state
if (step + 1) % update_every == 0:
self.update(trajectory, next_state)
trajectory = []
if (step + 1) % 100 == 0:
print(f"Step {step + 1}, reward: {reward}")
# -----------------------------
# Lancer l'entraînement
# -----------------------------
if __name__ == "__main__":
agent = A2CAgent("Pusher-v5")
agent.train(max_steps=2000)