import random from collections import deque import gymnasium as gym import numpy as np import torch import torch.nn as nn import torch.optim as optim ACTION_SET = [ np.zeros(17), np.full(17, -0.4), np.full(17, 0.4), np.concatenate([np.full(8, 0.4), np.full(9, -0.4)]) ] class DQN(nn.Module): def __init__(self, n_states=348, n_actions=4): super().__init__() self.net = nn.Sequential( nn.Linear(n_states, 64), nn.ReLU(), nn.Linear(64, n_actions) ) def forward(self, x): """ Forward pass of the network. :param x: torch.Tensor of shape [n_states] :return: torch.Tensor of shape [n_actions] with Q-Values for each action """ return self.net(x) def train_and_save(weights_path="humanoid_dqn.pth", episodes=20_000, update_target_every=20): """ Train a DQN agent on the Humanoid-v5 environnement. :param weights_path: file path to save learned network weights :param episodes: number of training episodes (complete games) :param update_target_every: how many episodes to wait before syncing the target network :return: trained Q-Network ready to be used for inference """ # environnement setup env = gym.make("Humanoid-v5") n_states, n_actions = env.observation_space.shape[0], len(ACTION_SET) # les DQN policy_net = DQN(n_states, n_actions) # Q Network target_net = DQN(n_states, n_actions) # Target network target_net.load_state_dict(policy_net.state_dict()) # same weights at start target_net.eval() # Optimizer et hyperparameters optimizer = optim.Adam(policy_net.parameters(), lr=1e-3) gamma = 0.99 # discount factor epsilon = 1.0 # Fréquence d'exploration initiale eps_min = 0.01 # Fréquence d'exploration minimale eps_decay = 0.9999 # Facteur de réduction d'epsilon memory = deque(maxlen=int(1e9)) batch_size = 64 # main training loop for ep in range(episodes): # env.reset() returns a tuple (initial_state, info_dict) s, _ = env.reset() s = torch.tensor(s, dtype=torch.float32) done, total_r = False, 0 while not done: # epsilon-greedy à chaque prévision d'action pour une exploration plus fine (a = indice d'action, a_vecteur) if random.random() < epsilon: a = random.randrange(n_actions) else: a = torch.argmax(policy_net(s)).item() a_vector = ACTION_SET[a] # env.step(s) returns (next_state, reward, terminated, truncated, info) ns, r, done, _, _ = env.step(a_vector) ns = torch.tensor(ns, dtype=torch.float32) memory.append((s, a ,r ,ns, done)) s, total_r = ns, total_r + r # learning phase if len(memory) >= batch_size: batch = random.sample(memory, batch_size) s_b, a_b, r_b, ns_b, d_b = zip(*batch) s_b = torch.stack(s_b) ns_b = torch.stack(ns_b) # Q values for chosen actions q_pred = policy_net(s_b).gather(1, torch.tensor(a_b).unsqueeze(1)).squeeze() # Target values using target network with torch.no_grad(): q_next = target_net(ns_b).max(1)[0] q_target = torch.tensor(r_b, dtype=torch.float32) + \ gamma * q_next * (1 - torch.tensor(d_b, dtype=torch.float32)) # MSE loss = ((q_pred - q_target)**2).mean() optimizer.zero_grad(); loss.backward(); optimizer.step() # decay epsilon to gradually reduce exploration epsilon = max(eps_min, epsilon * eps_decay) # Periodically synchronise target network with policy network if (ep + 1) % update_target_every == 0: target_net.load_state_dict(policy_net.state_dict()) if (ep + 1) % 20 == 0: print(f'Episode {ep + 1}: total reward {total_r:.1f}, epsilon {epsilon:.2f}') env.close() # save trained policy network torch.save(policy_net.state_dict(), weights_path) print(f'Training finished. Weights saved to {weights_path}') return policy_net # <--- trained Q-network def show(weights_path="humanoid_dqn.pth") -> None: """ Load trained Q network and run a single episode to visually demonstrate the learned policy :param weights_path: path to the saved network weights :return: """ env = gym.make("Humanoid-v5", render_mode="human") qnet = DQN() qnet.load_state_dict(torch.load(weights_path)) qnet.eval() s, _ = env.reset() s = torch.tensor(s, dtype=torch.float32) done = False total_r = 0.0 while not done: a = torch.argmax(qnet(s)).item() s_, r, done, _, _ = env.step(ACTION_SET[a]) s = torch.tensor(s_, dtype=torch.float32) total_r += r env.close() print(f'Demonstration finished. Reward: {total_r:.2f}') if __name__ == '__main__': trained_model = train_and_save() show()