From e26f2ff15d394d9d0f7395938c9cbe17cb7e308a Mon Sep 17 00:00:00 2001 From: Namu Date: Sun, 28 Sep 2025 20:40:47 +0200 Subject: [PATCH] feat: Add the second exercise (first throw) --- ex2.py | 121 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ tp2.py | 4 +- 2 files changed, 123 insertions(+), 2 deletions(-) create mode 100644 ex2.py diff --git a/ex2.py b/ex2.py new file mode 100644 index 0000000..f0573d7 --- /dev/null +++ b/ex2.py @@ -0,0 +1,121 @@ +import random +from collections import deque + +import gymnasium as gym +import torch +import torch.nn as nn +import torch.optim as optim + + +class DQN(nn.Module): + def __init__(self, n_states=4, n_actions=2): + """ + Notre modèle à deux états, et peux faire deux actions (trouver à gauche + ou à droite) + :param n_state: + :param n_action: + """ + super().__init__() + self.net = nn.Sequential( + nn.Linear(n_states, 64), nn.ReLU(), + nn.Linear(64, n_actions) + ) + + + def forward(self, x): + """ + + :param x: + :return: + """ + return self.net(x) + + +def epsilon_greedy(epsilon: float, s, policy_net: DQN, n_actions: int) -> int: + if random.random() < epsilon: + return random.randrange(n_actions) + else: + return torch.argmax(policy_net(s)).item() + + +def train_and_save(weights_path="cartpole_dqn.pth", episodes=2_000, update_target_every=20): + env = gym.make('CartPole-v1') + n_states, n_actions = env.observation_space.shape[0], env.action_space.n + + policy_net = DQN(n_states, n_actions) # Q Network + target_net = DQN(n_states, n_actions) # Target network + target_net.load_state_dict(policy_net.state_dict()) # same weights at start + target_net.eval() + + optimizer = optim.Adam(policy_net.parameters(), lr=1e-3) # <- erreur ici + gamma = 0.99 # discount factor + epsilon = 1.0 # Fréquence d'exploration initiale + eps_min = 0.05 # Fréquence d'exploration minimale + eps_decay = 0.995 # Facteur de réduction d'epsilon + memory = deque(maxlen=5000) + batch_size = 64 + + for ep in range(episodes): + s, _ = env.reset() + s = torch.tensor(s, dtype=torch.float32) + done, total_r = False, 0 + + while not done: + a = epsilon_greedy(epsilon, s, policy_net, n_actions) + + ns, r, done, _, _ = env.step(a) + ns = torch.tensor(ns, dtype=torch.float32) + + memory.append((s, a, r, ns, done)) + s, total_r = ns, total_r + r + + if len(memory) >= batch_size: + batch = random.sample(memory, batch_size) + s_b, a_b, r_b, ns_b, d_b = zip(*batch) + s_b = torch.stack(s_b) + ns_b = torch.stack(ns_b) + + q_pred = policy_net(s_b).gather(1, torch.tensor(a_b).unsqueeze(1)).squeeze() + + with torch.no_grad(): + q_next = target_net(ns_b).max(1)[0] + q_target = torch.tensor(r_b, dtype=torch.float32) + \ + gamma * q_next * (1 - torch.tensor(d_b, dtype=torch.float32)) + + loss = ((q_pred - q_target)**2).mean() + optimizer.zero_grad(); loss.backward(); optimizer.step() + + epsilon = max(eps_min, epsilon * eps_decay) + + if (ep + 1) % update_target_every == 0: + target_net.load_state_dict(policy_net.state_dict()) + + if (ep + 1) % 20 == 0: + print(f'Episode {ep + 1}: total reward {total_r:.1f}, epsilon {epsilon:.2f}') + env.close() + + torch.save(policy_net.state_dict(), weights_path) + print(f'Training finished. Weights saved to {weights_path}') + return policy_net # <--- trained Q-network + + +def show(weights_path='cartpole_dqn.pth') -> None: + env = gym.make('CartPole-v1', render_mode='human') + qnet = DQN() + qnet.load_state_dict(torch.load(weights_path)) + qnet.eval() + + s, _ = env.reset() + s = torch.tensor(s, dtype=torch.float32) + done = False + while not done: + a = torch.argmax(qnet(s)).item() + s_, r, done, _, _ = env.step(a) + s = torch.tensor(s_, dtype=torch.float32) + env.close() + print('Demonstration finished.') + + +if __name__ == '__main__': + #trained_model = train_and_save() + show() diff --git a/tp2.py b/tp2.py index 0a6c660..cb84e6e 100644 --- a/tp2.py +++ b/tp2.py @@ -38,8 +38,8 @@ def train_and_save(weights_path="acrobot_dqn.pth", episodes=2000, update_target_ n_states, n_actions = env.observation_space.shape[0], env.action_space.n # les DQN - policy_net = DQN(n_states, n_actions) # - target_net = DQN(n_states, n_actions) + policy_net = DQN(n_states, n_actions) # Q Network + target_net = DQN(n_states, n_actions) # Target network target_net.load_state_dict(policy_net.state_dict()) # same weights at start target_net.eval()